
The Method of EquivalenceI will now discuss a fundamental method, due to �Elie Cartan, for computing thedi�erential invariants of a geometric structure on a manifold.1. The Method of EquivalenceShortly after 1900, �Elie Cartan developed a uniform method for analysing the di�eren-tial invariants of many geometric structures, nowadays called the `method of equivalence'.In this section, I will describe the method and some of the basic results. In the followingsection, I will illustrate the method by numerous examples.1.1. The coframe bundle. Let M be a smooth n-manifold. A coframe at x 2M isa linear isomorphism u : TxM ! Rn.1 In practice, I �nd it helpful to think of a coframeat x as a 1-jet of a coordinate system centered at x. The set of such coframes based at xwill be denoted by F �x (M) (or simply F �x when the manifoldM is clear from context). Thedisjoint union of the F �x as x varies on M will be denoted F �(M) (or, again, simply F �)and is called the space of general coframes of M . The basepoint mapping � : F � ! M isde�ned by �(F �x ) = x. The group GL(n;R) acts on F � on the right by the rule u�A = A-1ufor u 2 F � and A 2 GL(n;R). This action is simply transitive on each of the �-�bers F �x .For any open set U � M , a (smooth) coframing of U is a choice � = (�i) where 1 �i � n and the �i are n (smooth) 1-forms on U that are everywhere linearly indepdendent.Associated to such a coframing �, there is a map H : U � GL(n;R)! F �(U) de�ned bythe formula H(x;A) = A-1�x :This map respects the right action by GL(n;R), i.e., H(x;AB) = B-1H(x;A) = H(x;A) �B. There is a unique smooth structure on F � for which the mapsH so constructed are dif-feomorphisms. Indeed, there is a unique structure of a smooth, principal GL(n;R)-bundleon F � so that the inverses of these maps are its smooth trivializations. Henceforth, thiswill be the smooth structure I assume on F �. The basepoint mapping � : F � ! M isthen a smooth submersion and a smooth local section of F � is simply a coframing on thedomain of the section.If N is another smooth n-manifold and f :M ! N is a local di�eomorphism, then asmooth bundle map f1 : F �(M) ! F �(N) covering f is de�ned by the rulef1(u) = u � �f 0��(u)��-1 :1Here and elsewhere, I always assume that Rn is represented as columns of height n with real entries.This is necessary in order that the representation of GL(n;R) onRn be via standard matrix multiplication.The neglect of this seemingly trivial point has caused considerable confusion, which I hope to avoid.1



2 GEOMETRY OF PDEThe assignment f 7! f1 is functorial (and covariant), as expected, with a commutativediagram F �(M) f1����! F �(N)??y ??yM f����! Nand f1 is a di�eomorphism.Finally, I should remark that is it sometimes more useful (and conceptually clearer)to replace Rn by an abstract n-dimensional real vector space V . One then speaks of theV -valued coframes, which are isomorphisms u : TxM ! V , and constructs the principalright GL(V )-bundle F �(M;V ) of V -valued coframes. The chief advantage of this moregeneral notation is that it is easier to keep track of the fundamental distinction between Vand V �. I will resort to this when necessary.1.1.1. G-structures. Let G be an n-by-nmatrix group, i.e., a Lie subgroup of GL(n;R).A (smooth) G-structure on an n-manifold M is simply a (smooth) G-subbundle of F � =F �(M), i.e., a (smooth) submanifold B � F � so that the restricted basepoint mapping � :B !M is a surjective submersion whose �bers Bx = B \ Fx are G-orbits.When G is closed in GL(n;R), an alternative de�nition is available, for then the quo-tient space F �=G carries the structure of a smooth bundle overM . Its �bers are essentiallycopies of the homogeneous space GL(n;R)=G. A choice of a (smooth) G-structure on Mis then equivalent to a choice of a (smooth) section of this bundle. This viewpoint isfrequently useful when one wants to make statements about the space of G-structures,as I will. Since the closed case is adequate for most applications, the reader may simplyassume that G is closed for the remainder of these lectures.Two G-structures B � F �(M) and ~B � F �( ~M ) are said to be equivalent if thereexists a di�eomorphism f : M ! ~M so that f1(B) = ~B. The equivalence problem forG-structures is the problem of developing e�ective methods for determining whether ornot two given G-structures are equivalent (and, if so, in how many ways). As I have alreadymentioned, it was �Elie Cartan who �rst posed this general problem. He also proposed amethod, nowadays known as the equivalence method of �E. Cartan, for its solution.Before discussing this method, I will illustrate its connections with geometry (and thegeometry of PDE in particular) by the use of several examples of geometric structuresthat are e�ectively described in terms of G-structures.Example 1.1.1.1. Let G = O(n), the orthogonal group in n dimensions with respectto the standard inner product on Rn. IfMn is endowed with a Riemannian metric g, thenone can de�ne Bg = f u 2 F �(M) u : TxM ! Rn is an isometry g :As the reader can verify, Bg is an O(n)-structure onM . Conversely, ifB is an O(n)-structureonM , then there exists a unique Riemannianmetric gB onM de�ned by the rule (gB)x(v;w) =u(v) � u(w) for v;w 2 TxM where u is any element of Bx. The very fact that B is anO(n)-structure ensures that this does well-de�ne gB as a Riemannian metric on M . Thetwo correspondences are inverse to each other, so a choice of a Riemannian metric isequivalent to a choice of O(n)-structure.22This example generalizes directly to the pseudo-Riemannian case. One simply replacesO(n) by O(p; q).



1. THE METHOD OF EQUIVALENCE 3The method of equivalence applied to O(n)-structures will construct the Levi-Civitaconnection and the usual Riemannian curvature apparatus.Example 1.1.1.2. Suppose now that n = 2m and letJm = � 0 -ImIm 0 �and de�ne G � GL(2m;R) to be the subgroup of matrices that commute with Jm. As thereader can verify, one can identify R2m with Cm in such a way that Jm becomes multi-plication by i and G is thereby shown to be isomorphic to GL(m; C ), so I will henceforthidentify it as such.Suppose now that J is an almost complex structure on a manifold M2m, i.e., J :TM ! TM is a bundle map satisfying J2 = -Id. The uniqueness up to isomorphism ofcomplex vector spaces of dimension m then implies that the setBJ = f u 2 F �x (M) u(Jxv) = Jm u(v) for all v 2 TxM g :has the property that each �ber �BJ�x is a GL(m; C )-orbit in F �x . Moreover, it is not di�-cult to show that when J is smooth, then so isBJ . Conversely, given a GL(m; C )-structureB �F �(M), there is a unique almost complex structure J for which B = BJ . Thus, the twokinds of structure are equivalent.The method of equivalence applied to GL(m; C )-structures in this case will, as a �rststep, for each almost complex structure J , construct its Nijnhuis tensor NJ as a sectionof TM 
�2�T �M� and show that it is a complete �rst order invariant. I.e., suppose thatJ and K are almost complex structures on 2m-manifoldsM and N respectively. Then forgiven points x 2 M and y 2 N , there exists a local di�eomorphism f : U ! N , de�nedon an x-neighborhood U , that satis�es f(x) = y and the condition that f�K-J vanishesto second order at x if and only if there exists a linear isomorphism L : TxM ! TyNsatisfying L��Ky� = Jx and L��NKy �NJx . Moreover, the equivalence method will predictthat K and J are locally equivalent if they satisfy NJ = NK = 0. That this prediction isvalid is the content of the Newlander-Nirenberg theorem.Example 1.1.1.3. Again, suppose that n = 2m and let Jm be de�ned as in theprevious example. Now, however, consider the subgroup Sp(m;R)� GL(2m;R) consistingof those matrices A 2 GL(2m;R) that satisfy tAJmA = Jm. This group is known asthe symplectic group of rank m and is a matrix group of dimension 2m2+m. Givena Sp(m;R)-structure B on a 2m-manifold M , one can de�ne a non-degenerate, 2-form 
on M by the rule
(v;w) = Jm�u(v)� � u(w) for all v;w 2 TxM , u 2 Bx :Conversely, the uniqueness up to isomorphism of symplectic vector spaces of a given dimen-sion implies that any non-degenerate 2-form onM corresponds to a unique Sp(m;R)-structurevia this construction.The method of equivalence in this case will show that d
 is a complete �rst-order in-variant of non-degenerate 2-forms, i.e., if 
 and � are non-degenerate 2-forms on 2m-manifoldsMand N respectively, then for given points x 2M and y 2 N , there exists a local di�eomor-phism f : U ! N where U is an x-neighborhood satisfying f(x) = y and the condition thatf��-
 vanishes to second order at x if and only if there exists a linear mapL : TxM ! TyN



4 GEOMETRY OF PDEsatisfying L���y� = 
x and L��d�y� = d
x. Moreover, it will (correctly) predict that
 and � are locally equivalent if they satisfy d
 = d� = 0, i.e., that Darboux' Theoremholds.Example 1.1.1.4. Now suppose that n = p + q where p and q are positive integers,and let Bp;q � GL(n;R) be the Borel subgroupBp;q = � �A 0L B� A 2 GL(p;R), B 2 GL(q;R), and C 2Mq;p �Note that Bp;q is the subgroup that preserves the q-dimensional subspace Q � Rn consist-ing of those vectors whose �rst p coordinates are zero. It follows that a Bp:q-structure Bon Mn determines a unique sub-bundle E � TM of rank q by the requirement thatu(Ex) = Q for all u 2 Bx. Conversely, given a sub-bundle E � TM of rank q, there is aunique Bp;q-structure onM that consists of those coframes u 2 F �x that satisfy u(Ex) = Q.The method of equivalence applied to Bp;q-structures will show how to constructfrom each q-plane �eld E on M a structure tensor �E on M that is a section of thebundle TM=E
�2(E�).3 Moreover, �E will be shown to be a complete �rst order invariantand the method will predict the Frobenius theorem, i.e., that any two q-plane �elds onn-manifolds with vanishing structure tensors are locally equivalent.Further analysis in the case where �E is non-zero (which contains many examplesimportant in control theory) depends on the algebraic structure of this map and can berather involved, as the examples to be considered below will demonstrate.Example 1.1.1.5. More generally, let I0 � A��Rn� be any graded ideal in the algebraof (constant coe�cient) alternating forms on Rn. Let G � GL(n;R) be the group of lineartransformations g whose induced action on A��Rn� preserves I0. Then a G-structure Bon Mn de�nes an ideal I � A�(M) (which, of course, need not be di�erentially closed)by the requirement that a p-form � on M belongs to I if and only if (u-1)�(�x) lies in I0for all x 2M and u 2 Bx. Such ideals are sometimes said to be of constant algebraic typesince for any two points x; y 2 M , there exists a linear isomorphism L : TxM ! TyMsatisfying L�(Iy) = Ix.Conversely, given an ideal I � A�(M) of constant algebraic type in this sense, oncecan clearly associate to it a G-structure where G is the group of automorphisms of a �xedrepresentative I0 of this type. As the examples to be presented below drawn from thestudy of partial di�erential equations indicate, the analysis via the method of equivalenceof these sorts of G-structures turns out to be an e�ective method of studying the originalPDE.Example 1.1.1.6. The triviality of this last example belies its importance, as will beseen. Suppose that G = feg is simply the identity matrix in GL(n;R). An feg-structureon M is simply a submanifold B � F �(M) that intersects each �ber in one point andprojects submersively (and hence, di�eomorphically) onto M . Hence, B is simply theimage of a smooth global section of F �(M), i.e., a coframing � = (�i) of M . Thus, anfeg-structure can be identi�ed with a global coframing of M .3This tensor is implicit in the works of �Elie Cartan, who used it extensively, as did many of hisstudents. Modern authors sometimes refer to it as the Martinet tensor, but this appelation is not universal.Calling it the `Cartan structure tensor' would be fair but hardly descriptive, given the plethora of objectsthat could be so designated.



1. THE METHOD OF EQUIVALENCE 51.1.2. The tautological 1-form. A distinguishing feature of the coframe bundle F � thatis inherited by all of its subbundles is the presence of a canonical 1-form with values in Rn.Definition 1.1.2.1. For any G-stucture B � F �(M), the tautological 1-form ! isde�ned by !(v) = u��0(u)(v)� for all v 2 TuB.Thus, for u 2 B, the linear map !u is de�ned to be the compositionTuB�0(u)??yT�(u)M u����! Rn;so that ! is a 1-form on B with values in Rn. This 1-form seems to be known by variousnames in the literature. In some physics literature, for example, it is known as the `sol-dering form'. Interest in this 1-form stems from its invariance properties, to which I nowturn.By its very construction, ! can be regarded as the pullback to B (via the inclusionmap) of the tautological 1-form on F � itself (thought of as the canonical GL(n;R)-structureon M).It is helpful to look at a formula for ! in a local trivialization. If � is a local sectionof B with domain U �M , let H : U �G! B be the inverse trivialization de�ned earlier:H(x; g) = g-1 �x . Unwinding the de�ntions yields the pullback formulaH�(!) = g-1 �:Thus, writing ! = �!i�, one sees that the n components of ! are linearly independent1-forms whose simultaneous kernel consists of the vectors tangent to the �-�bers of B.In particular, ! is �-semi-basic. This description also makes it clear that ! has the`reproducing property': ��(!) = � for any local section � of B.The most important property of !, however is the way it detects the prolongations ofdi�eomorphisms of the base manifold M .Proposition 1.1.2.2. If f : M1 ! M2 is a di�eomorphism and Bi � F �(Mi) areG-structures satisfying f1�B1) = B2, then f�1 (!2) = !1. Conversely, if U � B1 is anopen subset of a G-structure on M1 with the property that its �-�bers are connected and� : U ! F �(M2) is any smooth mapping satisfying ��(!2) = !1, then there exists aunique smooth mapping f : �(U) ! M2 that satis�es f � �1 = �2 � g. Moreover, f is alocal di�eomorphism and g is the restriction to U of f1.Proof. The �rst statement is just a matter of unwinding the de�nitions and applyingthe chain rule. One has a commutative diagram of maps:B1 f1�! B2�1??y ??y�2M1 f�! M2



6 GEOMETRY OF PDEand, starting with a vector v 2 TuB, one hasf�1 (!2)(v) = !2�f 01(u)(v)�= f1(u)��02(f1(u))(f 01(u)(v))� = f1(u)�(�2 � f1)(u)(v)�= f1(u)�(f � �1)(u)(v)� = f1(u)�f 0(�1(u))(�01(u)(v))�= u�(f 0(�1(u)))-1f 0(�1(u))(�01(u)(v))� = u�(�01(u)(v))�= !1(v):The more interesting result is the converse. Suppose now that B is a G-structure on M ,that U � B is an open set with connected �-�bers, and that g : U ! F �(M2) is a smoothmap satisfying g�(!2) = !1. Since, in each case, the kernel of !i is the tangent space tothe �-�bers, it follows from the hypothesis that the �1-�bers Ux of U are connected forall x 2M that g must map each Ux into some �2-�ber F �f(x)(M2). The map f : �1(U) ! Nmust be smooth since it can be written locally as a composition of the form �2 �g�� where� is a smooth local section of U over �1(U). Moreover, by construction, f � �1 = �2 � g.The equation g�(!2) = !1 implies, in particular, that �2 � g is a submersion, so f mustalso be a submersion, and hence, for dimension reasons, a local di�eomorphism. Thus, themap f1 is well-de�ned on U and, by the �rst part of the proof, must satisfy f�1 (!2) = !1.Now since �2 � g = f ��1 = �2 � f1, it follows that there is a function a : U ! GL(n;R) sothat g(u) = f1(u) � a(u). However, using this formula for g and unwinding the de�nitionsas before, one �nds that !1 = g�(!2) = a-1 f�1 (!2) = a-1 !1 :However, the independence of the n components of !1 now imply that a must be the mapto the identity matrix. Thus, g = f1, as desired. Finally, note that because f1 commuteswith the action of GL(n;R) and hence of G, it follows that g must do so as well, so that,at least locally, its image is an open subset of a G-structure on f��1(U)�With the tautological 1-form in place, one can begin to see how the method of equiva-lence will go: To test whether or not twoG-structuresB1 andB2 are locally equivalent, onelooks for integral manifolds of the 1-form � = !1 � !2 on the product manifold B1 �B2.If one can �nd such an integral manifold � � B1 � B2 that projects di�eomorphicallyonto each of the factors, then it will be the graph of a smooth map g : B1 ! B2 thatsatis�es g�(!2) = !1 and hence, by the proposition just proved, will be induced by adi�eomorphism f :M1 ! M2 that induces an equivalence between the two G-structures.The reader familiar with Cartan's `technique of the graph' from the theory of Lie groupswill recognize this approach as a generalization of that technique.The main di�erence (and di�culty) is that, for any matrix group G of positive di-mension, the components of ! on a G-structure B do not form a coframing of B, whichthe usual form of the technique of the graph requires. In the following section, a methodof completing ! to a coframing in a canonical way will be presented that works for many(indeed, most) matrix groups G. One can then proceed to the case of a manifold endowedwith a global coframing, i.e., the case of an feg-structure, the case treated in the sectionafter that.1.1.3. Pseudoconnections and the intrinsic torsion. In this section, it will often beuseful to use the language of linear maps, homomorphisms, kernels, and cokernels in



1. THE METHOD OF EQUIVALENCE 7addition to the more pedestrian indicial notation, which, while often useful in calculations,tends to obscure the underlying concepts. For to this end, I will regard Rn as an abstractreal vector space V of dimension n endowed with a basis vi (1 � i � n) that the readershould regard as the standard unit column vectors. The dual basis of V � will be denotedby vi. For example, the tautological 1-form on F �(M) can be written in the form! = !i viwhere the !i are ordinary 1-forms on F �(M).Let G be a matrix group and let g � gl(n;R) be its Lie algebra. I will supposethat dimG = s and, when necessary, I will let u� (1 � � � s) denote a basis of g.Because of the canonical inclusion g ,! gl(n;R) = V 
 V �, there are constants ui�j sothat u� = ui�j vi 
 vj , and these constants will sometimes be useful in formulae.Now, one method of �nding a coframing on a G-structure B goes as follows. Choosea connection form � on B, i.e., a 1-form � on B with values in g with the following twoproperties:(a) �(Xv) = v for any v 2 g (here, Xv denotes the vector �eld on B whose ow �v isde�ned by �v(t; u) = u � evt).(b) R�a(�) = a-1�a for all a 2 G.The existence of such a form follows from a standard partition of unity argument. Nowwrite � = �� u�. The s 1-forms �s then supplement the tautological 1-forms !i to de�nea global coframing on B.The problem with this coframing is that, unlike the !i, there is no reason to expectthe �� to be preserved by every equivalence between two G-structures. Evidently, if oneis to �nd a canonical coframing of B, one must choose more carefully.The key to making an informed choice in this situation is to start by examining thestructure of the exterior derivative of the canonical 1-form in a local trivialization. Let � =�i vi be a local section of B with domain U �M . There are unique functions Cijk = -Cikjon U so that d�i = 12 Cijk �j ^ �k:Writing C = 12 Cijk vi 
vj^vk, and regarding C as a function from U to V 
�2(V �), thiscan be written as a vector equation in the formd� = 12C�� ^ ��:Consider the inverse trivialization H : U � G ! B associated to � as described in theprevious subsection. For any connection � on B, there exists a g-valued 1-form �0 on U sothat H�(�) = g�1dg+g�1�0g. Now, taking the exterior derivative of the relation H�(!) =g�1� yields H��d!� = d�g�1 �� = �g�1dg ^ g�1� + g�1d�= �g�1dg ^ g�1� + 12g�1C�� ^ ��= H�(�� ^!) + g�1 ��0 ^ � + 12C�� ^ ���= H� ��� ^! + 12T �! ^!��where T = 12 T ijk vi
vj^vk is a function on B with values in the vector space V 
�2(V �)that satis�es the equivariance T (u � A) = �1�A�1��T (u)� where �1 = �0 
 �2(�y0) is the



8 GEOMETRY OF PDEinduced representation on the stated tensor product. In other words, the �rst structureequation of �Elie Cartan holds: d! = �� ^! + 12T �! ^!�The function T is known as the torsion function of the connection �. Of course, it repre-sents a section of the vector bundle TM 
 �2(T �M) that is the associated bundle to Bconstructed from the G-representation �1.Now consider the e�ect on T of changing the connection. Let �� be any other connec-tion on B. The di�erence �� � � is a g-valued 1-form on B that, by property (a) above,vanishes on vectors tangent to the �bers of � : B ! M . Hence, there exists a uniquefunction p : B ! g 
 V � so that �� = � + p(!):In terms of the bases of g and V �, this function p can be written in the form p = p�i u�
vifor some functions p�i on B. Property (b) implies that p is G-equivariant, i.e., p(u � A) =(ad
�y0)�A�1��p(u)� for all A 2 G. Conversely, for any G-equivariant p : B ! g
V � andany connection 1-form �, the formula �� = � + p(!) de�nes a connection 1-form on B.Since d! = �� ^! + 12T �! ^!� = ��� ^! + 12T ��! ^!�;where T � is the torsion function associated to ��, it follows that12 (T � � T )�! ^!� = (�� � �)^! = �p(!)� ^! = �12�(p) �! ^!�;i.e., that T � = T � �(p) where � : g 
 V � ! V 
 �2(V �) is the G-equivariant linear mapde�ned as the compositiong 
 V � �! �V 
 V ��
 V � �! V 
 �2(V �);where the �rst map is the tensor product with V � of the inclusion g ,! V 
 V � and thesecond map is skewsymmetrization in the second two factors.The formula T � = T��(p) suggests studying the kernel and cokernel of the map �. Forreasons that will be taken up again in a later section, these spaces have special notationsand names: ker � = g(1) and coker � = H0;2(g):The space g(1) is known as the �rst prolongation of g and the space H0;2(g) is knownas the intrinsic torsion space of g. This notation is somewhat misleading, since, as willbe seen, these spaces depend not only on the abstract Lie algebra g but its embeddinginto gl(V ) ' V 
 V �. Because the map � is G-equivariant, it folows that these two vectorspaces have natural induced G-actions, i.e., there are representations �(1) : G! GL�g(1)�and �0;2 : G! GL�H0;2(g)�.For any element t 2 V 
 �2(V �), let [t] 2 H0;2(g) denote its projection into theintrinsic torsion space. Then the computation above shows that [T �] = [T ] as maps of Binto H0;2(g). In other words, the map [T ] : B ! H0;2(g) is independent of the choice ofconnection �. This map [T ] is known as the intrinsic torsion function of the G-structure B.Because of the nature of the construction, this map is G-equivariant, i.e., for all A 2 Gand u 2 B, [T ]�u �A� = �0;2�A�1��[T ](u)�:



1. THE METHOD OF EQUIVALENCE 9Proposition 1.1.3.1. If f : M1 ! M2 is a di�eomorphism and Bi � F �(Mi) areG-structures satisfying f1�B1) = B2, then f�1 ([T2]) = [T1]. Moreover, if [T1](u1) = [T2](u2)for some ui 2 Bi, then there exists an open neighborhood U � M1 of x1 = �(u1) and alocal di�eomorphism f : U1 !M2 so that f1(u1) = u2 and so that f1(B1) is tangent to B2along the orbit u2 �G.Proof. The �rst statement is easy to prove while the second is somewhat moresubtle, though its signi�cance should be clear: The intrinsic torsion is the only di�erentialinvariant of �rst order for G-structures.To prove the �rst statement, suppose that �i is a connection 1-form on Bi and supposethat f : M1 ! M2 satis�es f1(B1) = B2. Since f1 is G-equivariant by constuction, itfollows that f�1 (�2) is a connection form on B1, so that f�1 (�2) = �1 + p(!1) for somep : B1 ! g
 V �. Consequently, it follows that f�1 T2 = T1 � �p, so thatf�1 ([T2]) = �f�1 (T2)� = �T1 � �(p)� = [T1];as claimed.To prove the second statement, it will be necessary to construct the desired map f .I'll do this later.1.1.4. e-structures. The case of feg-structures occupies a critical place in the theory, soit is worthwhile to devote some time to understanding this case. I will now collect togethersome of the basic results about feg-structures that will be needed in the remainder of thelectures.The �rst problem that I want to take up is how to compute the local and in�nitesimalautomorphisms of a given feg-structure. I will begin the discussion by considering theconstruction of the di�erential invariants of such a structure.Thus, suppose given a coframing ! = (!i) on an n-manifold M . Since the !i are abasis for the 1-forms on M , it follows that there exist unique functions Cijk = �Cikj on Mso that d!i = 12Cijk !i ^!j :In general, of course, these functions will not be constants, but will satisfy di�erentialequations got by taking the exterior derivative of the equations above. The result isequations of the form�dCijk + (CimkCm̀j �CimjCm̀k)!`� ^!j ^!k = 0Regarding the case of global automorphisms, it is a theorem of Kobayashi [Kob] that,for any coframing � of a connected manifold M , the group � of (globally de�ned) smoothmaps f : M ! M that satisfy f�(�) = � can be given a smooth structure of a Lie groupso that for each x 2 M , the evaluation map Ex : � ! M de�ned by Ex(f) = f(x) is asmooth embedding of � as a closed submanifold of M .Another important aspect of this problem is a uniqueness theorem, which should,roughly, state that two feg-structures whose derived invariants are `related in the sameway' are, in fact, locally equivalent.Theorem. Suppose that, on a domain D � Rs, there are speci�ed smooth func-tions Cijk = �Cikj and F�i where the indices satisfy the ranges 1 � i; j; k � n and



10 GEOMETRY OF PDE1 � � � s. Suppose further that there are n-manifolds M and N , endowed with cofram-ings ! and �, respectively, so that there exist smooth mappings a :M ! D and b : N ! Dsatisfying d!i = 12Cijk�a !j ^!kda� = F�j �a!j d�i = 12Cijk�b �j ^ �kdb� = F�j �b �jThen if there exist x 2M and y 2 N so that a(x) = b(y), there exists an x-neighborhood U �M and a smooth map f : U ! N satisfying f(x) = y, f�(�) = !, and f�(b) = a.Proof. Of course, the proof would like to use the Frobenius Theorem: On M �N ,one should consider the Pfa�an system I generated by the 1-forms �i = �i�!i restrictedto the submanifold Z �M �N de�ned by b � a = 0. The di�culty is that one does notknow anything a priori about the rank of the functions a and b, so there is no reason tobelieve that Z is anything like a smooth manifold. Moreover, even if it could be shown tobe a smooth manifold, there is no reason to believe that the Pfa�an system I restrictedto Z need have constant rank, making application of the Frobenius Theorem problematic.Thus, an alternative is needed. For this reason, I will �rst prove a lemma generalizing theFrobenius theorem that is of interest in its own right.Lemma. Let I be a di�erentially closed ideal on a manifold M of dimension n+pand suppose that I is generated algebraically by a �nite number of functions fz1; : : : ; zsgtogether with p 1-forms f�1; : : : ; �pg that are linearly independent. Then the set Z = fx 2M z�(x) = 0for 1 � � � s g is a disjoint union of n-dimensional integral manifolds of I.Proof. By the usual uniqueness theorems in ordinary di�erential equations, it su�cesto show that every point of Z lies in at least one n-dimensional integral manifold of I sinceit is clear that there is at most one n-dimensional integral manifold of I passing througheach point of M .Fix x 2 Z. Note that, by the di�erential closure of I and using the index ranges1 � a; b � n, 1 � �; � � s, there must exist functions f�a , 1-forms  �� and �ab , and2-forms �a� on M so that dz� = z�  �� + f�b �bd�a = z� �a� + �ab ^ �bI claim that it follows that any integral curve of the �i that intersects Z must lie entirelyin Z. For suppose that  : [0; 1] ! M satis�es �(�i) = 0 and (0) = z 2 Z. Then thefunctions �� on [0; 1] de�ned by ��(t) = z��(t)� satisfy the initial conditions ��(0) = 0and the linear system of di�erential equationsd��dt =  �� �0(t)���;which, by uniqueness, forces ��(t) = 0 for all t.Now, from the linear independence of the �a, it follows that there is a neighborhoodof z 2 Z on which there exist vector �elds Xi (1 � i � n) that are linearly independentand satisfy �a(Xi) = 0 for all a and i. It then follows that there exists a smooth map Lfrom a cubic neighborhood of 0 2 Rn to M that satis�esL(t1; : : : ; tn) = exptnXn � � � � � expt1X1(z):



1. THE METHOD OF EQUIVALENCE 11By shrinking the neighborhood of 0, I can arrange that L is a smooth embedding ofthe neighborhood into M . The fundamental property enjoyed by L aside from satisfy-ing L(0) = z is that every curve of the form(t) = L(x1; : : : ; xi�1; t; 0; : : : ; 0)is an integral curve of Xi and hence of the 1-forms �a. In particular, it follows that theimage of L lies entirely in the locus Z. It remains to show that L is an integral manifoldof the �a. To see this, set �a = L�(�a) and 'ab = L�(�ab ). Then the structure equationsabove show that d�a = 'ab ^ �b:The �a also have the property that they vanish along curves of the form t 7! (x1; : : : ; xi�1; t; 0; : : : ; 0),i.e., when one writes �a = Aai ; dxi, the functions Aai satisfyAai (x1; : : : ; xi; 0; : : : ; 0) = 0and, by the equations for d�a, there are equations of the form@Aai@xj � @Aaj@xi = BabiAbj �BabjAbi :Now the proof of the usual Frobenius Theorem applies: uniqueness in a succession ofCauchy problems shows that the Aai must vanish identically. Hence 0 = �a = L�(�), sothat the image of L is an integral manifold of the �a, as desired. �Using this Lemma, the proof of the Theorem will be straightforward once the appro-priate ideal has been constructed. First, let a(x) = b(y) = a0 2 D. By a theorem ofWhitney [GG], in a neighborhood of (a0; a0) in D �D, there exist smooth functions F�i�and Cijk� so that F�i (p) � F�i (q) = F�i�(p; q)(p� � q�)Cijk(p) �Cijk(q) = Cijk�(p; q)(p� � q�)for all (p; q) in this neighborhood. It follows that if we de�ne functions z� = a� � b� onM �N , then there exist functions H�i� and Gijk� on a neighborhoodW of (x; y) 2M �Nso that F�i �a� F�i �b = H�i�z�Cijk�a � Cijk�b = Gijk�z�By the given structure equations, one then gets a formuladz� = d(a� � b�) = F�i �a!i � F�i �a �i = H�i�z� !i � F�i �b �i:Also, by the given structure equationsd�i = d�i � d!i = 12Cijk�b �i ^ �j � 12Cijk�a !i ^!j= 12Cijk�b ��i ^ �j � !i ^!j�� 12Cijk�z� !i ^!j= 12Cijk�b ��i ^ �j + �i ^!j + !i ^ �j�� 12Gijk� z� !i ^!j :Thus, the ideal I generated by the �i and the z� satis�es the hypotheses of the Lemma ina neighborhood of (x; y) 2M �N . An application of the Lemma then gives the existenceof an n-dimensional integral manifold of I in a neighborhood of (x; y). By construction,



12 GEOMETRY OF PDEthe 1-forms !i are linearly independent on this integral manifold, so near (x; y) it is thegraph of the desired map f . �So much for uniqueness. However, for many applications, it is important to know howmany coframings exist (up to di�eomorphism) where the derived invariants satisfy somegiven constraints in advance. The typical case occurs in geometric problems where thecalculations have led to some formulae of the formd!i = 12Cijk !j ^!k;da� = F�j ; !j :where the functions Cijk and F�i are explicitly known in terms of the functions a. Further-more, exterior di�erentiation of these equations produces no new relations among the !iand the a�. One would then like to know whether there exists such a system or not.The simplest case of this kind of question is when there are no di�erential invariants a�,i.e., when the Cijk are constants. In this case, the exterior derivative of the equation d!i =12Cijk !j^!k is the equation0 = d�d!i� = �CimjCmkl +CimkCmlj + CimlCmjk�!j ^!k ^!l;so it follows that such a system with the !i independent cannot exist unless the con-stants Cijk satisfy the Jacobi identities:0 = CimjCmkl + CimkCmlj + CimlCmjk :for all i, j, k, and l. As Lie proved in his Third Fundamental Theorem, this necessarycondition is also su�cient.In the more general case where Cijk is allowed to depend on some parameters and theirderivatives in terms of the coframing are speci�ed, a generalization of the Jacobi identityis required. This generalized condition is found the same way as the Jacobi condition: onecomputes the exterior derivatives of the given equations and notes the identities that thefunctions C and F must satisfy in order for the exterior derivatives to be consequences ofthe equations themselves. According to the following theorem, these necessary identitiesare also su�cient in the case where the C and F are analytic functions of a. Thus, thisis a generalization of Lie's Third Fundamental Theorem. It is due, in this form, to �ElieCartan.Theorem. Suppose that D � Rs is an open set on which there exist real analyticfunctions Cijk = �Cikj and F�i (where the index ranges are 1 � i; j; k � n and 1 ��; �;  � s) and suppose that these functions satisfy the equations12  F�j @Cikl@a� + F�k @Cilj@a� + F�l @Cijk@a� ! = CimjCmkl +CimkCmlj + CimlCmjkand F �i @F�j@a� � F �j @F�i@a� = F�l C lij :



1. THE METHOD OF EQUIVALENCE 13Then for every a0 2 D, there exists a real analytic n-manifold M together with a real an-alytic coframing � = (�i) and a real analytic mapping a :M ! D satisfying the equationsd!i = 12Cijk�a !j ^!k;da� = F�j �a ; !j :Remark. Of course by the previous theorem, this manifold and coframing are uniqueup to di�eomorphism. Note that a need not have constant rank or even have rank n on adense open subset ofM . An example in [Br?] that classi�es the torsion-free connections on4-manifolds with holonomy conjugate to the irreducible degree 4 representation of SL(2;R)displays how complicated the maps a and their images can be.Proof. The proof is a straightforward application of the Cartan-K�ahler theorem.Set X = Rn � GL(n;R) � D with projections to the factors given by x : X ! Rn,g : X ! GL(n;R), and a : X ! D. De�ne the Rn-valued 1-form ! = (!i) on X by theformula ! = p�1 dx. Now de�ne the 1-forms and 2-forms�� = da� � F�j !j�i = d!i � 12Cijk !j ^!kLet I be the di�erential ideal generated by the 1-forms �� and the 2-forms �i. Then,because of the assumptions that we made about the functions Cijk and F�i , a computationreveals that d�� = �@F�i@a� �� � F�i �id�i = �Cijk �j ^!k � 12 @Cijk@a� �� ^!j ^!kIn particular, I is di�erentially generated by the given 1-forms and 2-forms.Now, from the de�nition of !i, it follows that there exist 1-formsij � (g�1 dg)ij mod f!1; : : : ; !ngso that �i = �ij^!j . Hence, the equations �� = ij = 0 de�ne a �eld of n-dimensionalintegral elements of I. One easily establishes (using any ag) that the characters of theseelements are s0 = s, and si = n for 1 � i � n. Moreover, the space of integral elements atany point satis�ng the independence condition !1^ � � �!n 6= 0 is parametrized by n�n+12 �parameters pijk = pikj by the equations�� = ij � pijk !k = 0:Thus, S = n�n+12 � = s1+2s2+ � � �+n sn and Cartan's Test is veri�ed, so that all of theseintegral elements are ordinary. By the Cartan-K�ahler Theorem, there exist n-dimensionalintegral manifolds satisfying the independence condition !1^ � � �!n 6= 0 through everypoint of X. Pulling back the 1-forms !i and the coordinate projection a to such anintegral manifold M passing through (0; In; a0) 2 X = Rn�GL(n;R)�D then producesthe desired coframing and mapping. �Remark 1. The reader may have noticed that very little about the structure of thedomainD is used in the proof. In actual fact, the theorem can be stated without referenceto coordinates on D and, in this form, it is perhaps clearer, though not as computationally



14 GEOMETRY OF PDEimmediate. It does sometimes happen that this version is useful, however, so I will inserta short discussion of this here: One can avoid any mention of indices or coordinatesby resorting to the following language: Let V be a vector space of dimension n andlet D be a (real analytic) manifold of some dimension s. Suppose given a (real analytic)function C : D ! V 
�2(V �) and a (real analytic) bundle map F : D� V ! TD (whichis not assumed to be of constant rank). Assume also that C and F satisfy certain naturalPDE of the form fF;Cg1 = J(C)fF;Fg2 = hF; C i(I leave the de�nition of the various operators to the interested reader.) Then for every a0 2D, there exist a neighborhood M of 0 2 Rn on which there exist a V -valued coframing !and a (real analytic) function a : M ! D satisfying a(0) = a0 and the equations d! =C�a (!^!) and da = F�a (!). (Here, `da' is to be interpreted as the di�erential da :TM ! TD.)Remark 2. The hypothesis of real analyticity is probably not necessary and a gen-eralization of the usual argument for Lie's Third Fundamental Theorem using only ODEcould be constructed, but I leave this also for the interested reader. The real analytic casemore than su�ces for all that I have in mind.Remark 3. Let D� � D be the open, dense subset consisting of those a0 2 Dwhere F (a0), considerd as an s-by-n matrix, has maximal rank r � min(s; n). Then D�is foliated by the images of maps a : M ! D associated to coframings of this type, withleaves of dimension r and hence of codimension s�r. Thus, it makes sense to say thatthe `generic' coframing of this type depends on s�r parameters and has an in�nitesimalsymmetry algebra of dimension n�r. However, this statement can be deceptive and somust be handled with care. For example, it can happen that there is a stratum D� � Dwhere the rank of F is some r� < r that is foliated by images of maps a and the codimensionof this foliation is greater than s � r. In this case, the moduli space of `special' solutionsassociated to D� will have greater `dimension' than that of the moduli space of `generic'solutions.1.2. The crude method.1.2.1. The �rst structure equation.1.2.2. Prolongation.1.2.3. The tower of bundles.1.2.4. Polynomial di�erential invariants.1.3. Reduction.1.3.1. The torsion representation.1.3.2. Stabilizer types and reduction.2. Elementary Examples2.1. Riemannian geometry.2.2. 3-webs in the plane.2.3. .



3. ADVANCED EXAMPLES 153. Advanced Examples3.1. Real Lagrangian bipolarizations. This example will treat the geometry ofan Sp(n;R)-structure and two substructures, the substructure preserving a Lagrangianfoliation and the substructure preserving a Lagrangian bi-polarization.3.2. CR-hypersurfaces in C 2 . In this example, I will give an exposition of Car-tan's solution of the equivalence problem for non-degenerate hypersurfaces in complex 2-manifolds. Of course, the theory has been extensively developed in the intervening years,with the general solution for a non-degenerate hypersurface in a complex n-manifold beingthe subject of a famous paper by Chern and Moser [ChMo] as well of several works byTanaka and his school [Ta??].3.2.1. The geometric problem and its G-structure. Suppose that M3 � X is a smoothreal hypersurface in a complex 2-manifold X, which can be taken to be C 2 if desired . Foreach x 2M , the tangent plane TxM cannot be a complex subspace of TxX, but containsa unique complex subspace Dx � TxM of complex dimension 1. Thus, M inherits ageometric structure from being immersed as a hypersurface in a complex 2-manifold.Definition 3.2.1.1. A (smooth) CR-structure on a 3-manifold M is a choice of a(smooth) rank 2 subbundle D � TM together with a choice of complex structure on D,i.e., a smooth bundle map J : D! D satisfying J2 = �IdD.In the real analytic category, every CR-structure on a 3-manifold is locally inducedby an immersion into C 2 .Proposition 3.2.2. Let �D;J� be a real analytic CR-structure onM3. Then for eachpoint x 2 M there exists an x-neighborhood U and a real analytic embedding Z : U ! C 2so that �D;J� is the CR-structure on U induced by the embedding Z.Proof. On a neighborhood U of x choose a real analytic, non-vanishing real 1-form �that annihilates D and a real-analytic, complex valued 1-form � linearly independentfrom � that satis�es �(Jv) = { �(v) for all v 2 D. Then any complex-valued 1-form � on Uthat satis�es �(Jv) = { �(v) is a linear combination of � and �. As the reader can check, toconstruct the desired Z, one must �nd two complex functions z1 and z2 in a neighborhoodof x whose di�erentials are linearly independent and that satisfy dzk(Jv) = { dzk(v), i.e.,so that dzk^�^! = 0. Now, on N = U � C with second projection z : N ! C , let I bethe ideal generated by the two 3-forms that are the real and imaginary parts of dz^�^!.The characters are si = 0 for i 6= 2 and s2 = 2. The space of 3-dimensional integralelements that satisfy the independence condition �^!^�! 6= 0 is clearly of dimension 4,so the system is in involution. Choose two integral manifolds �i, i = 1; 2 of this systemthat pass through (x; 0) 2 N but that are not tangent there. Each is then the graph of afunction zi that satis�es dzk^�^! = 0 and the condition that the two integral manifoldsnot be tangent is equivalent to dz1^dz2 6= 0. �Remark. The famous Levy-Nirenberg example shows that the assumption of realanalyticity is necessary here.Suppose now that M3 is endowed with a CR-structure �D;J�. Let V = R� C andthink of V as the space of columns of height 2 whose �rst entry is real and whose secondentry is complex. A coframe u : TxM ! V will be said to be 0-adapted to �D;J� ifu(Dx) = C � V and, moreover, u(Jv) = i u(v) for all v 2 Dx. I will let B0 � F �(M;V )denote the space of 0-adapted V -valued coframes on M . If u and u� lie in B0 and share



16 GEOMETRY OF PDEthe same basepoint, then u� = � r 0b a� uwhere r is a real number and a and b are complex, with a 6= 0. Thus, B0 is a G0-structureon M where G0 = � � r 0b a� r 2 R�; a 2 C � ; and b 2 C � :Conversely, given a G0-structure B0 on M , there is canonically associated to it a uniqueCR-structure �D;J� that gives rise to it via this construction. Thus, the two sorts ofstructures are equivalent.3.2.2. The �rst analysis. Now let B0 be a G0-structure on M3. I will write thecanonical V -valued 1-form ! on B0 in the form! = � ���where � is a real-valued 1-form and � is a complex-valued 1-form. The �rst structureequation can be written in the formd� ��� = �� �0 0�0 �0� ^ � ���+� �^�b � +�b ���+ {L �^���^�c � + e ���+ T �^�� �where L is a real function on B0 but the other coe�cients are allowed to be complex.Clearly, by adding multiples of �, � and �� to the pseudo-connection forms �0, �0, and �0,I can arrange that b = c = e = T = 0, but I cannot a�ect L. Thus, I can assume that thestructure equations have the formd� ��� = �� �0 0�0 �0� ^ � ���+� {L �^��0 � :Di�erentiating the �rst equation d� = ��0^� + {L �^�� and reducing modulo � gives therelation dL � L��0 + ��0 � �0� mod �; �; ��;so it follows that either L vanishes identically on a �ber of B0 or is nowhere zero there.The case where L vanishes identically, i.e., the intrinsic torsion of the G0-structurevanishes turns out not to be very interesting. In this case, one can calculate that thecharacters of the Lie algebra g0 are s1 = 3, s2 = 1, and s3 = 0. Moreover the variability ofthe pseudo-connection is of dimension 5 = s1+2s2, so G0 is semi-involutive and all of thereal-analytic G0-structures with vanishing torsion are equivalent. Thus, it makes sense toconcentrate on the (generic) case where L is nowhere vanishing.Now, there is a direct geometric interpretation of L. Since � is a non-zero multipleof ��(�) where � is any non-vanishing 1-form with D = ker�, it follows that �^d� ={L �^�^�� is non-zero if and only if �^d� is non-zero, i.e., if and only if D is a contact plane�eld on M3.



3. ADVANCED EXAMPLES 17Definition 3.2.2.1. A CR-structure �D;J� onM3 is non-degenerate ifD is nowhere-integrable, i.e., is a contact structure on M .Thus, the condition that L be nowhere vanishing is the condition that the originalCR-structure be non-degenerate. From now on, I am going to assume that this is the case.This assumption leads directly to the �rst reduction: SetB1 = f u 2 B0 L(u) = 1 g:Then B1 is a G1-structure on M whereG1 = � � a�a 0b a� a 2 C � and b 2 C � :Pulling all of the forms on B0 back to B1 and giving them the same names, the structureequations on B1 now readd� ��� = ���0 + ��0 0�0 �0� ^ � ���+� (�0 + ��0 � �0)^� + { �^��0 � :where �0 + ��0 � �0 = a� + b� + �b�� for some functions a and b on B1. Subtracting b�from �0 reduces the function b to zero and the structure equations becomed� ��� = ���0 + ��0 0�0 �0� ^ � ���+� { �^��0 � :Now the torsion is constant. If the algebra g1 were involutive, then reaching this pointwould imply that any two non-degenerate G0-structures were locally equivalent. However,one easily computes that the characters of this algebra are s1 = 3, s2 = 1, and s3 = 0while the pseudo-connections with this torsion are determined up to a replacement of theform ��0; �0� 7! ���0; ��0� where���0��0 � = ��0�0 �+� s1 0s2 s1�� ��� ;and s1 and s2 are arbitrary complex-valued functions on B1, so dimg(1)1 = 4 < s1 + 2s2 +3s3 = 5. Hence, there remains the possibility that there will be di�erential invariants atsome higher order.3.2.3. Prolongation and further reductions. According to the prescription of themethod of equivalence, I now construct a g(1)1 -bundle B(1)1 over B1 that consists of thecoframes on B1 with values in V � g1 that satisfy the structure equations of B1. Forsimplicity, I will identify V � g1 with R� C 3 thought of as the columns of height 4 withthe �rst entry real and the remaining three complex. In the trivialization B(1)1 = B1�g(1)1induced by the section B1 ! B(1)1 represented by a choice of �0 and �0 on B1 as above,the canonical 1-form !(1) has the form!(1) = 0B@ ����1CA =0B@ 1 0 0 00 1 0 0s1 0 0 0s2 s1 0 01CA�10B@ ���0�01CA = 0B@ ���0 � s1��0 � s2� � s1�1CA



18 GEOMETRY OF PDEwhere, of course, the functions s1 and s2 now represent coordinates on g(1)1 and so areindependent from the functions on B1. The structure equations on B(1)1 have the form:d0B@ ����1CA = �0B@ 0 0 0 00 0 0 0�10 0 0 0�20 �10 0 01CA0B@ ����1CA+0B@�(�+ ��)^� + { �^����^� � �^�T�T� 1CAwhere T� and T� represent the torsion terms associated to those components of the canon-ical 1-form while �10 and �20 are 1-forms that satisfy �i0 � dsi modulo semi-basic forms forthe projection B(1)1 ! B1 but that are otherwise arbitrary.Computing the exterior derivatives of the �rst two structure equations yields0 = d�d�� = ��T� + T� � { � ^ �� + { �� ^ ��^ �0 = d�d�� = ��T� + � ^ ���^ � � �T� + { � ^ ���^ �Setting T �� = T� + { �^�� +2{ ��^� and T �� = T� + �^��, these equations can be writtenin the form �T �� + T �� �^ � = �T �� �^ � + �T ���^ � = 0and the second of these equations implies, via Cartan's Lemma, that there exist 1-forms  1, 2, and  3 so that T �� =  2 ^ � +  1 ^ �T �� =  3 ^ � +  2 ^ �Since T �� and T �� are semi-basic, it follows that the  i must be also. Thus, by subtracting  2from �10 and  3 from �20, I can suppose that  2 =  3 = 0. Then the remaining equationon T �� implies that � 1 ^ � +  1 ^ � �^ � = 0;which implies that  1^� = b �^� + R�^�� where b is a complex function and R is a realfunction. By adding b � to �10 , I can assume that b = 0, so that the structure equationsnow take the formd0B@ ����1CA = �0B@ 0 0 0 00 0 0 0�10 0 0 0�20 �10 0 01CA0B@ ����1CA+0B@ �(�+ ��)^� + { �^����^� � �^��{ �^�� � 2{ ��^� +R�^����^�� 1CA :Now computing the exterior derivative of the d� equation modulo � yields0 = d�d�� � �dR� (�+ ��)R � 2{(�10 � �10) �^ � ^ �� mod �which implies dR � (� + ��)R+ 2{(�10 � �10) mod �; �; ��:In particular, on each �ber of B(1)1 ! B1, the relation dR = 2{ d(s1 � s1) holds. It followsthat the equation R = 0 de�nes a G2-structure B2 � B(1)1 on B1 where G2 is the subgroupconsisting of those matrices in g(1)1 for which s1 is real. I will now pull back all of the



3. ADVANCED EXAMPLES 19forms and functions on B(1)1 to B2, write �10 = �0 + { � where �0 and � are real 1-forms,and write the structure equations on B2 in the formd0B@ ����1CA = �0B@ 0 0 0 00 0 0 0�0 0 0 0�20 �0 0 01CA0B@ ����1CA+0B@ �(�+ ��)^� + { �^����^� � �^��{ �^�� � 2{ ��^� � { �^���^��� { �^� 1CA :The above congruence for dR now implies that � = a � + b �+�b �� for some real function aand complex function b on B2. By adding {a � to �20 , I can arrange that a = 0, but Icannot absorb b. The last two structure equations now readd� = ��0 ^ � � { � ^ �� � 2{ �� ^ � � { (b � +�b ��)^ �d� = ��20 ^ � � �0 ^ � � � ^ ��+ {�b � ^ ��and it remains to determine how b varies on the �bers of B2 ! B1. To do this, computethe exterior derivative of the �rst of these equations and write it in the form0 = d(d�) = � �d�0 � (� + ��)^ �0 � { � ^ �� + 12 {��20 ^ �� � �20 ^ �� � ^ �� { �db� (2� + ��) b + 32 �20 � ^ � ^ �� { �d�b � (2�� + �) �b + 32 �20 � ^ �� ^ �The imaginary part of this equation implies thatdb � (2� + ��) b � 32 �20 mod �; �; ��;which implies that, on each �ber of B2 ! B1, an equation of the form db = 32 ds2 holds.In particular, the equation b = 0 de�nes a G3-structure B3 � B2 on B1 where G3 is the1-dimensional subgroup of G2 de�ned by the equation s2 = 0.Now pull back all of the forms and functions involved to B3. The structure equationstake the formd0B@ ����1CA = �0B@ 0 0 0 00 0 0 0�0 0 0 00 �0 0 01CA0B@ ����1CA+0B@�(� + ��)^� + { �^����^� � �^��{ �^�� � 2{ ��^���^��� �20^� 1CA :where �20 is now basic, and, in fact, from the imaginary part of the equation above, mustsatisfy ��20^�+ �20^���^� = 0. This implies �20^� = (r� + s��)^� where r and s are real andcomplex functions, respectively, on B3. By adding r� to �0 and calling the result �, I canarrange that r = 0, and the structure equations becomed0B@ ����1CA = �0B@ 0 0 0 00 0 0 0� 0 0 00 � 0 01CA0B@ ����1CA+0B@�(�+ ��)^� + { �^����^� � �^��{ �^�� � 2{ ��^���^��� s ��^� 1CA :where, now � is uniquely speci�ed by these conditions. Thus, B3 is endowed with acanonical feg-structure and this constitutes the solution of the equivalence problem.



20 GEOMETRY OF PDETo complete the structure equations, however, a formula for d� is needed. The d(d�) =0 equation now yields 0 = �d� � (� + ��)^� � { � ^ �� � ^ �so that d� = (� + ��)^� + { �^ �� + �^� where � is a real 1-form. Using this equation, theidentity d(d�) = 0 expands to0 = d(d�) = �^ � ^ � � �ds � (3�� + �)s� ^ �� ^ �;from which it follows that there are complex functions u, p, and q on B3 so thatds = (3��+ �)s + u � + p � + q ��whence �^� = �(p �� + �p �)^�, so thatd� = (�+ ��)^ � + { � ^ �� � (p �� + �p �)^ �:The �nal Bianchi identity will follow from d�d�� = 0, and this expands to give the state-ment that there exist functions a, r, and v on B3, with r being real valued, so thatdp = (3��+ 2�)p � {s �� + a� + r� + v��:3.2.3 Conclusions. Several conclusions can be drawn from these calculations.First of all, since the group of symmetries of a non-degenerate CR-structure ona 3-manifold embeds into the group of symmetries of an feg-structure on an 8-manifold,it follows that the group of symmetries of such a CR-structure is a Lie group of dimensionat most 8.Moreover, this maximum dimension can be reached only if the local symmetry groupof the feg-structure on B3 acts with open orbits on B3. However, examining the structureequations, this happens if and only if the functions s and p are locally constant. Thestructure equation for ds, however, shows that s cannot be locally constant unless itvanishes, which implies in turn that p vanishes as well. Then the equationsd� = �(� + ��)^ � + { � ^ ��d� = �� ^ � � �^ �d� = �� ^ � � { � ^ �� � 2{ �� ^ �d� = �� ^ � + �� ^�d� = (� + ��)^ � + { � ^ ��are the structure equations of a Lie group of dimension 8.Naturally, the reader will want to know which one. The simplest way to identify thegroup is to notice that there are no �^�� terms on the right hand side of these equations butthat � appears in the right hand side of all the equations except that of d�. This impliesthat the vector �elds X and Y dual to the real and imaginary parts of � form a maximaltorus of dimension 2 in the Lie algebra of in�nitesimal symmetries of the coframing. Forany form � in the coframing, de�ne its X- and Y -weights by the formulaewX(�)� = X d�;{wY (�)� = Y d�:



3. ADVANCED EXAMPLES 21Then plotting the pairs �wX(�); wY (�)� in the plane as � ranges over the basis (�; �; ��; �; ��; �; ��; �)reveals the characteristic hexagon of the roots of A2. Moreover, because the roots are`half-real', the actual real form of A2 represented must be su(2; 1). Thus, the group mustbe SU(2; 1). In fact, the structure equations can be written in the form d = �^ where = 0@�13 (2�+ ��) �{ �� �{ �� 13 (� � ��) { ��{ � �� 13 (�+ 2��)1ANote that  takes values in su(2; 1), where the model of SU(2; 1) being used is the subgroupof SL(3; C ) that �xes the Hermitian form H in three variables H(Z) = Z3 Z1 � Z2 Z2 +Z1 Z3.In particular, if M3 is simply connected, there is a smooth map F : B3 ! SU(2; 1)that satis�es F �(g�1 dg) = . As the structure equations reveal, F maps each �berof B3 !M to a left coset of the parabolic subgroup P � SU(2; 1) consisting of the uppertriangular matrices in SU(2; 1), i.e., the subgroup that �xes theH-null line L0 � C 3 de�nedby Z2 = Z3 = 0. Thus, SU(2; 1)=P is naturally identi�ed with the hypersurface N3 � CP2of H-null lines in CP2. Thus, F covers a map f :M3 ! N3 that is a local equivalence ofCR-structures. The conclusion is that every CR-structure with 8-dimensional in�nitesimalsymmetry algebra on a simply connected 3-manifold has a `developing map' to N3 that isunique up to composition with a CR-automorphism of this `at' structure.4Second, in the general case, s is the coe�cient of a tensor �eld that is well-de�nedon M . The simplest such expression involving s is perhaps Q = s�s �4, which is a well-de�ned section of S4�D?� on M . This follows since Q is manifestly semibasic and and acomputation using the structure equations reveals that, for any vertical vector �eld Y forthe projection B3 !M , the Lie derivative of Q with respect to Y vanishes. One can alsointerpret the expression S = s ��
��
� as a well-de�ned section of the bundle S0;2(D)
D?over M , i.e., the bundle of complex anti-linear quadratic forms on D with values in D?.Other combinations of the functions on B3 make well-de�ned tensors on M as well, buthave to be treated with more care. For example, the expression E = s ��2�� + 2{p ����2mod �3 yields a well-de�ned section of the quotient bundle S3(T �M)=(D?)3. The veri�-cation of these statements will be left to the reader.Third, in the case where Q = s�s �4 is non-vanishing on M , there is a canonicalreduction of B3 to a Z2-structure B4 ! M de�ned by the equations s = �1, p = 0,u+ �u = 0. This follows from the formulae for ds and dp together with the formuladu � (4��+ 2�)u+ p � + 4s� mod �; �; ��(which is derived from the identity d(ds) = 0). Pulling all the given quantities back to B4,writing u = 2{m where m is real and replacing q by 8�q for notational convenience, thisresults in equations � = {m � � 3q � + �q ��� = {a � + {v � + {r ��4Explicitly computing this developing map requires solving a Lie equation of the form dg = g where is a known 1-form with values in su(2; 1).



22 GEOMETRY OF PDEresulting in structure equations of the formd� = 2(q� + �q��)^ � + { � ^ ��d� = t � ^ � + �q � ^ �� � {r �� ^ �for some function t constructed out of the other invariants. Under the Z2-action on thedouble cover B4 ! M , the form � is even while � is odd. Thus, the coframining (�; �) iswell-de�ned on M up to a replacement of the form (�; �) 7! (�;��). It also follows that tand r are even while q is odd.In particular, it follows from this that the group of symmetries of a non-degenerate CR-structure for which Q 6= 0 is a Lie group of dimension at most 3 and that this upper boundis reached only for homogeneous structures, in which case, the functions q, r, and t mustbe constants. Indeed, if one assumes that these functions are constants, then computingthe exterior derivatives of the above equations yields that t+�t = 0, so that t = {b, for somereal constant b, and the equation rq + b�q = 0. Conversely, any solution (r; b; q) 2 R2� Cof rq + b�q = 0 de�nes a homogeneous CR-structure. Cartan used this fact in his originalpaper [Ca??] to classify the homogeneous CR-hypersurfaces in C 2 .3.3. Monge-Amp�ere systems in two independent variables. A long exampleexplaining the geometry of Monge-Amp�ere systems on 5-manifolds and explaining thethree types.3.4. Monge-Amp�ere systems in three independent variables. A long exampleexplaining the geometry of Monge-Amp�ere systems on 7-manifolds and explaining thealgebra of constant types together with a �rst pass at the invariants.3.5. Almost complex 4-manifolds.3.6. Pfa�an systems.


