The Method of Equivalence

I will now discuss a fundamental method, due to Elie Cartan, for computing the
differential invariants of a geometric structure on a manifold.

1. The Method of Equivalence

Shortly after 1900, Elie Cartan developed a uniform method for analysing the differen-
tial invariants of many geometric structures, nowadays called the ‘method of equivalence’.
In this section, I will describe the method and some of the basic results. In the following
section, I will illustrate the method by numerous examples.

1.1. The coframe bundle. Let M be a smooth n-manifold. A coframe at x € M is
a linear isomorphism v : T, M — R™! In practice, I find it helpful to think of a coframe
at x as a 1-jet of a coordinate system centered at x. The set of such coframes based at x
will be denoted by F¥(M) (or simply F;f when the manifold M is clear from context). The
disjoint union of the F as x varies on M will be denoted F*(M) (or, again, simply F*)
and is called the space of general coframes of M. The basepoint mapping = : F* — M 1is
defined by 7(F}) = . The group GL(n, R) acts on F* on the right by the rule u-4 = A '
for v € F* and A € GL(n,R). This action is simply transitive on each of the w-fibers F.

For any open set U C M, a (smooth) coframing of U is a choice n = (n') where 1 <
i < n and the n* are n (smooth) 1-forms on U that are everywhere linearly indepdendent.
Associated to such a coframing 7, there is a map H : U x GL(n,R) — F*(U) defined by
the formula

H(x,A) = ATn,.

This map respects the right action by GL(n,R), i.e., H(z, AB) = B! H(z, A) = H(x,A)-
B. There is a unique smooth structure on F* for which the maps H so constructed are dif-
feomorphisms. Indeed, there is a unique structure of a smooth, principal GL(n, R)-bundle
on F* so that the inverses of these maps are its smooth trivializations. Henceforth, this
will be the smooth structure I assume on F*. The basepoint mapping = : F* — M is
then a smooth submersion and a smooth local section of F* is simply a coframing on the
domain of the section.

If N is another smooth n-manifold and f : M — N is a local diffeomorphism, then a
smooth bundle map f; : F*(M) — F*(N) covering f is defined by the rule

Alu)=uo (£ (x(u)”

Here and elsewhere, I always assume that R™ is represented as columns of height n with real entries.
This is necessary in order that the representation of GL(n,R) on R™ be via standard matrix multiplication.
The neglect of this seemingly trivial point has caused considerable confusion, which I hope to avoid.

1
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The assignment f — fi is functorial (and covariant), as expected, with a commutative
diagram
F*(M) —" F*(N)
M —ls N
and fy is a diffeomorphism.

Finally, I should remark that is it sometimes more useful (and conceptually clearer)
to replace R™ by an abstract n-dimensional real vector space V. One then speaks of the
V-valued coframes, which are isomorphisms u : T,M — V', and constructs the principal
right GL(V)-bundle F*(M,V) of V-valued coframes. The chief advantage of this more
general notation is that it is easier to keep track of the fundamental distinction between V
and V*. T will resort to this when necessary.

1.1.1. G-structures. Let G be an n-by-n matrix group, i.e., a Lie subgroup of GL(n,R).
A (smooth) G-structure on an n-manifold M is simply a (smooth) G-subbundle of F* =
F*(M), i.e., a (smooth) submanifold B C F* so that the restricted basepoint mapping = :
B — M is a surjective submersion whose fibers B, = B N F, are G-orbits.

When G is closed in GL(n,R), an alternative definition is available, for then the quo-
tient space F* /G carries the structure of a smooth bundle over M. Its fibers are essentially
copies of the homogeneous space GL(n,R)/G. A choice of a (smooth) G-structure on M
is then equivalent to a choice of a (smooth) section of this bundle. This viewpoint is
frequently useful when one wants to make statements about the space of G-structures,
as I will. Since the closed case is adequate for most applications, the reader may simply
assume that G is closed for the remainder of these lectures.

Two G-structures B C F*(M) and B C F*(M) are said to be equivalent if there
exists a diffeomorphism f : M — M so that f; (B) = B. The equivalence problem for
G-structures is the problem of developing effective methods for determining whether or
not two given G-structures are equivalent (and, if so, in how many ways). As I have already
mentioned, 1t was Elie Cartan who first posed this general problem. He also proposed a
method, nowadays known as the equivalence method of E. Cartan, for its solution.

Before discussing this method, I will illustrate its connections with geometry (and the
geometry of PDE in particular) by the use of several examples of geometric structures
that are effectively described in terms of G-structures.

EXAMPLE 1.1.1.1. Let G = O(n), the orthogonal group in n dimensions with respect
to the standard inner product on R™. If M™ is endowed with a Riemannian metric g, then
one can define

By,={ueF"(M)|u:T, M — R"is an isometry }.

As the reader can verify, By is an O(n)-structure on M. Conversely, if B is an O(n)-structure
on M, then there exists a unique Riemannian metric gg on M defined by the rule (¢p).(v,w) =
u(v) - u(w) for v,w € TyM where u is any element of B,. The very fact that B is an
O(n)-structure ensures that this does well-define gp as a Riemannian metric on M. The
two correspondences are inverse to each other, so a choice of a Riemannian metric is
equivalent to a choice of O(n)-structure.?

?This example generalizes directly to the pseudo-Riemannian case. One simply replaces O(n) by O(p, ¢).
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The method of equivalence applied to O(n)-structures will construct the Levi-Civita
connection and the usual Riemannian curvature apparatus.
EXAMPLE 1.1.1.2. Suppose now that n = 2m and let

0 I
= T )

and define G C GL(2m,R) to be the subgroup of matrices that commute with J,,. As the
reader can verify, one can identify R%?™ with C™ in such a way that .J,, becomes multi-
plication by ¢ and G is thereby shown to be isomorphic to GL(m, C), so I will henceforth
identify it as such.

Suppose now that .J is an almost complex structure on a manifold M?*™, ie., J :
TM — TM is a bundle map satisfying J? = -Id. The uniqueness up to isomorphism of
complex vector spaces of dimension m then implies that the set

Bry={uweF;(M)|u(Jyw)=Jpnu(v)foralveT,M}.

has the property that each fiber <B]>x is a GL(m, C)-orbit in F}. Moreover, it is not diffi-
cult to show that when .J is smooth, then sois B ;. Conversely, given a GL(m, C)-structure B C
F*(M), there is a unique almost complex structure .J for which B = By. Thus, the two
kinds of structure are equivalent.

The method of equivalence applied to GL(m, C)-structures in this case will, as a first
step, for each almost complex structure .J, construct its Nijnhuis tensor N7 as a section
of TM @ A? (T*M) and show that it is a complete first order invariant. I.e., suppose that
J and K are almost complex structures on 2m-manifolds M and N respectively. Then for
given points x € M and y € N, there exists a local diffeomorphism f : U — N, defined
on an z-neighborhood U, that satisfies f(x) = y and the condition that f*K-J vanishes
to second order at x if and only if there exists a linear isomorphism L : T,M — T,N
satisfying L* (Ky> = J, and L* (N;(>Ng. Moreover, the equivalence method will predict
that K and J are locally equivalent if they satisfy N7/ = N® = 0. That this prediction is
valid is the content of the Newlander-Nirenberg theorem.

ExaMPLE 1.1.1.3. Again, suppose that n = 2m and let J,,, be defined as in the
previous example. Now, however, consider the subgroup Sp(m,R) C GL(2m, R) consisting
of those matrices A € GL(2m,R) that satisfy ‘A.J,, A = J,,. This group is known as
the symplectic group of rank m and is a matrix group of dimension 2m*4m. Given
a Sp(m, R)-structure B on a 2m-manifold M, one can define a non-degenerate, 2-form
on M by the rule

Qv,w) = Jp, (u(v)) ~u(w) for all v,w € TyM, u € B,

Conversely, the uniqueness up to isomorphism of symplectic vector spaces of a given dimen-
sion implies that any non-degenerate 2-form on M corresponds to a unique Sp(m, R)-structure
via this construction.

The method of equivalence in this case will show that df2 is a complete first-order in-
variant of non-degenerate 2-forms, i.e., if {2 and T are non-degenerate 2-forms on 2m-manifolds M
and N respectively, then for given points @ € M and y € N, there exists a local diffeomor-
phism f : U — N where U is an z-neighborhood satisfying f(z) = y and the condition that
f*T-Q vanishes to second order at x if and only if there exists a linear map L : T, M — Ty N



4 GEOMETRY OF PDE

satisfying L* (Ty> =, and L* (dTy> = d;. Moreover, it will (correctly) predict that
Q and T are locally equivalent if they satisfy d{2 = dY = 0, i.e., that Darboux’ Theorem
holds.

ExaMPLE 1.1.1.4. Now suppose that n = p + ¢ where p and ¢ are positive integers,
and let B, , C GL(n,R) be the Borel subgroup

By, = { (‘2 g) ‘ A€ GL(p,R), B € GL(¢,R), and C € M, }

Note that B, 4 is the subgroup that preserves the ¢-dimensional subspace Q C R" consist-
ing of those vectors whose first p coordinates are zero. It follows that a B, ,-structure B
on M" determines a unique sub-bundle £ C TM of rank ¢ by the requirement that
u(Ey) = Q for all u € B,. Conversely, given a sub-bundle E C TM of rank ¢, there is a
unique B, ,-structure on M that consists of those coframes v € F that satisfy u(E,) = Q.

The method of equivalence applied to B, ,-structures will show how to construct
from each ¢-plane field F on M a structure tensor ép on M that is a section of the
bundle TM/E®@A?(E*).> Moreover, §g will be shown to be a complete first order invariant
and the method will predict the Frobenius theorem, i.e., that any two ¢-plane fields on
n-manifolds with vanishing structure tensors are locally equivalent.

Further analysis in the case where dp is non-zero (which contains many examples
important in control theory) depends on the algebraic structure of this map and can be
rather involved, as the examples to be considered below will demonstrate.

EXAMPLE 1.1.1.5. More generally, let [, C A* (R") be any graded ideal in the algebra
of (constant coeflicient) alternating forms on R™. Let G C GL(n,R) be the group of linear
transformations g whose induced action on A* (R") preserves [y. Then a G-structure B
on M" defines an ideal I C A*(M) (which, of course, need not be differentially closed)
by the requirement that a p-form ¢ on M belongs to I if and only if (u™)*(¢,) lies in Iy
for all © € M and v € B,.. Such ideals are sometimes said to be of constant algebraic type
since for any two points x,y € M, there exists a linear isomorphism L : T, M — T, M
satisfying L*(1,) = I,.

Conversely, given an ideal I C A*(M) of constant algebraic type in this sense, once
can clearly associate to it a G-structure where G is the group of automorphisms of a fixed
representative Iy of this type. As the examples to be presented below drawn from the
study of partial differential equations indicate, the analysis via the method of equivalence
of these sorts of G-structures turns out to be an effective method of studying the original
PDE.

ExXAMPLE 1.1.1.6. The triviality of this last example belies its importance, as will be
seen. Suppose that G = {e} is simply the identity matrix in GL(n,R). An {e}-structure
on M is simply a submanifold B C F*(M) that intersects each fiber in one point and
projects submersively (and hence, diffeomorphically) onto M. Hence, B is simply the
image of a smooth global section of F*(M), i.e., a coframing n = (') of M. Thus, an
{e}-structure can be identified with a global coframing of M.

3This tensor is implicit in the works of Elie Cartan, who used it extensively, as did many of his
students. Modern authors sometimes refer to it as the Martinet tensor, but this appelation is not universal.

Calling it the ‘Cartan structure tensor’ would be fair but hardly descriptive, given the plethora of objects
that could be so designated.
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1.1.2. The tautological 1-form. A distinguishing feature of the coframe bundle F'* that
is inherited by all of its subbundles is the presence of a canonical 1-form with values in R"”.

DEFINITION 1.1.2.1. For any G-stucture B C F*(M), the tautological 1-form w is
defined by

w(v) = u(ﬂ"(u)(u)) for all v € T, B.

Thus, for u € B, the linear map w, is defined to be the composition

T.B

ﬂ/(u)l

Tr(wyM —— R,

so that w is a 1-form on B with values in R™. This 1-form seems to be known by various
names in the literature. In some physics literature, for example, it is known as the ‘sol-
dering form’. Interest in this 1-form stems from its invariance properties, to which I now
turn.

By its very construction, w can be regarded as the pullback to B (via the inclusion
map) of the tautological 1-form on F* itself (thought of as the canonical GL(n, R)-structure
on M).

It is helpful to look at a formula for w in a local trivialization. If n is a local section
of B with domain U C M, let H : U x G — B be the inverse trivialization defined earlier:
H(z,9) = g"' ;. Unwinding the defintions yields the pullback formula

H*(w)=g"n.

Thus, writing w = (w’), one sees that the n components of w are linearly independent
1-forms whose simultaneous kernel consists of the vectors tangent to the w-fibers of B.
In particular, w is w-semi-basic. This description also makes it clear that w has the
‘reproducing property’: n*(w) = n for any local section n of B.

The most important property of w, however is the way it detects the prolongations of
diffeomorphisms of the base manifold M.

PROPOSITION 1.1.2.2. If f : My — My is a diffeomorphism and B; C F*(M;) are
G-structures satisfying fi (Bl) = By, then f{(w2) = wi. Conversely, if U C By is an
open subset of a G-structure on My with the property that its w-fibers are connected and
¢ U — F*(Ms) is any smooth mapping satisfying ¢*(w2) = wi, then there exists a
unique smooth mapping f : m(U) — My that satisfies f om = my0g. Moreover, f is a
local diffeomorphism and g 1s the restriction to U of fi.

PROOF. The first statement is just a matter of unwinding the definitions and applying
the chain rule. One has a commutative diagram of maps:

B, % B,

- | |
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and, starting with a vector v € T, B, one has

) (f' (71 (w))(7 (u)(v)))
Fr(ma ()™ f (o () (w (u) (0))) = u (7] (w)(v)))
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The more interesting result is the converse. Suppose now that B is a G-structure on M,
that U C B is an open set with connected n-fibers, and that g : U — F*(M3) is a smooth
map satisfying ¢*(w2) = wi. Since, in each case, the kernel of w; is the tangent space to
the w-fibers, it follows from the hypothesis that the 7 -fibers U, of U are connected for
all ¥ € M that g must map each U, into some my-fiber F;f(x)(Mg). Themap f:m(U) = N
must be smooth since it can be written locally as a composition of the form 73 0 gon where
n is a smooth local section of U over =1 (U). Moreover, by construction, f ow; = w3 0 g.
The equation ¢*(wz) = wy implies, in particular, that 73 0 g is a submersion, so f must
also be a submersion, and hence, for dimension reasons, a local diffeomorphism. Thus, the
map f1 is well-defined on U and, by the first part of the proof, must satisfy f;(w2) = w1.
Now since 7y 0g = fomy = mp 0 f1, it follows that there is a function a : U — GL(n,R) so
that g(u) = fi(u) - a(u). However, using this formula for ¢ and unwinding the definitions
as before, one finds that

wi = g" (we) = a! f(we) =atw.

However, the independence of the n components of w; now imply that ¢ must be the map
to the identity matrix. Thus, g = fi, as desired. Finally, note that because f; commutes
with the action of GL(n,R) and hence of G, it follows that ¢ must do so as well, so that,
at least locally, its image is an open subset of a G-structure on f(m(U))

With the tautological 1-form in place, one can begin to see how the method of equiva-
lence will go: To test whether or not two G-structures By and By are locally equivalent, one
looks for integral manifolds of the 1-form 8 = w; — wy on the product manifold By x Bs.
If one can find such an integral manifold I' C By x By that projects diffeomorphically
onto each of the factors, then it will be the graph of a smooth map ¢g : By — B that
satisfies ¢*(wz) = wy and hence, by the proposition just proved, will be induced by a
diffeomorphism f : M; — M, that induces an equivalence between the two G-structures.
The reader familiar with Cartan’s ‘technique of the graph’ from the theory of Lie groups
will recognize this approach as a generalization of that technique.

The main difference (and difficulty) is that, for any matrix group G of positive di-
mension, the components of w on a G-structure B do not form a coframing of B, which
the usual form of the technique of the graph requires. In the following section, a method
of completing w to a coframing in a canonical way will be presented that works for many
(indeed, most) matrix groups G. One can then proceed to the case of a manifold endowed
with a global coframing, i.e., the case of an {e}-structure, the case treated in the section
after that.

1.1.3. Pseudoconnections and the intrinsic torsion. In this section, it will often be
useful to use the language of linear maps, homomorphisms, kernels, and cokernels in
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addition to the more pedestrian indicial notation, which, while often useful in calculations,
tends to obscure the underlying concepts. For to this end, I will regard R™ as an abstract
real vector space V of dimension n endowed with a basis v; (1 < i < n) that the reader
should regard as the standard unit column vectors. The dual basis of V* will be denoted
by v*. For example, the tautological 1-form on F*(M) can be written in the form

w=w'v;

where the w® are ordinary 1-forms on F*(M).

Let G be a matrix group and let g C gl(n,R) be its Lie algebra. I will suppose
that dim G = s and, when necessary, I will let u, (1 < a < s) denote a basis of g.
Because of the canonical inclusion g — gl(n,R) = V @ V*, there are constants u;j SO
that u, = u;j v; @ v/, and these constants will sometimes be useful in formulae.

Now, one method of finding a coframing on a G-structure B goes as follows. Choose
a connection form 6 on B, i.e., a 1-form 6 on B with values in g with the following two

properties:

(a) 6(X,) = v for any v € g (here, X, denotes the vector field on B whose flow &, is
defined by ®,(t,u) = u - e"?).

(b) R:(0) = a'6a for all a € G.

The existence of such a form follows from a standard partition of unity argument. Now
write # = #% u,. The s 1-forms #° then supplement the tautological 1-forms w! to define
a global coframing on B.

The problem with this coframing is that, unlike the w?, there is no reason to expect
the 6% to be preserved by every equivalence between two G-structures. Evidently, if one
is to find a canonical coframing of B, one must choose more carefully.

The key to making an informed choice in this situation is to start by examining the
structure of the exterior derivative of the canonical 1-form in a local trivialization. Let n =
n' v; be a local section of B with domain U C M. There are unique functions C}k = - Iij
on U so that

dn' = %C’;k n? ank.
Writing C' = 1 C}k v; @ v/ avF and regarding C as a function from U to V @ A2(V*), this
can be written as a vector equation in the form

dn = %C(n A 77).
Consider the inverse trivialization H : U x G — B associated to n as described in the
previous subsection. For any connection 6 on B, there exists a g-valued 1-form 6y on U so
that H*(8) = g~ 'dg+ g~ 160g. Now, taking the exterior derivative of the relation H*(w) =
g~ 'n yields
H*(dw) =d(g™'n) = —g~'dgng™'n+g " dn

=—g 'dgng '+ 597 Clnan)

= H* (—=0rw)+g " (6orn+ %C’(nAn»

=H* (—GAw + %T(w /\(4)))

k is a function on B with values in the vector space V @ Az(V*)

where T = % Tjk v; QVvIav
that satisfies the equivariance T(u - A) = p1 (A1) (T(u)) where p; = po @ Az(,og) is the
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induced representation on the stated tensor product. In other words, the first structure
equation of Elie Cartan holds:

dw = —0rw + %T(w A@)

The function T is known as the torsion function of the connection 8. Of course, it repre-
sents a section of the vector bundle TM & Az(T*M) that is the associated bundle to B
constructed from the G-representation p;.

Now consider the effect on T" of changing the connection. Let 6* be any other connec-
tion on B. The difference 8* — 6 is a g-valued 1-form on B that, by property (a) above,
vanishes on vectors tangent to the fibers of # : B — M. Hence, there exists a unique
function p: B — g ® V* so that

0" =60+ p(w).
In terms of the bases of g and V*, this function p can be written in the form p = p® u, @ v*
for some functions p on B. Property (b) implies that p is G-equivariant, i.e., p(u - A) =
(ad@pé)(A_1> (p(u)) for all A € GG. Conversely, for any G-equivariant p: B — g®@ V* and
any connection 1-form 6, the formula 6* = 6 + p(w) defines a connection 1-form on B.
Since
dw = —0rw+ %T(w A@) =—0"rw+ %T*<w /\(4)),

where T is the torsion function associated to 6*, it follows that
T — T)(wAw> =(0"—0)rw = (p(w)) rw = —18(p) (w /\(4)),

i.e., that T* = T — §(p) where § : g@ V* — V @ A?(V*) is the G-equivariant linear map
defined as the composition

gV — (VaV) eV — Ve A (V,

where the first map is the tensor product with V* of the inclusion g — V @ V* and the
second map is skewsymmetrization in the second two factors.

The formula T* = T'—§(p) suggests studying the kernel and cokernel of the map §. For
reasons that will be taken up again in a later section, these spaces have special notations
and names:

ker§ = gV and coker § = H*?(g).

The space g\!) is known as the first prolongation of g and the space H%%(g) is known
as the wntrinsic torsion space of g. This notation is somewhat misleading, since, as will
be seen, these spaces depend not only on the abstract Lie algebra g but its embedding
into gl(V) ~ V @ V*. Because the map ¢ is G-equivariant, it folows that these two vector
spaces have natural induced G-actions, i.e., there are representations p!) : G — GL (g(1)>
and pgo: G — GL<H0’2(9)>.

For any element t € V @ A*(V*), let [t] € H%?(g) denote its projection into the
intrinsic torsion space. Then the computation above shows that [T%*] = [T] as maps of B
into H%2(g). In other words, the map [T] : B — H%?(g) is independent of the choice of
connection €. This map [T is known as the intrinsic torsion function of the G-structure B.
Because of the nature of the construction, this map is G-equivariant, i.e., for all A € G
and u € B,

T](u- A) = poa(A™) (IT](w).
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PrOPOSITION 1.1.3.1. If f : My — My is a diffeomorphism and B; C F*(M;) are
G-structures satisfying f1(B1) = Ba, then f{([T2]) = [T1]. Moreover, if [T1](u1) = [T5](us2)
for some u; € B, then there exists an open neighborhood U C My of x1 = w(uy) and a
local diffeomorphism f : Uy — My so that fi(u1) = ug and so that fi(By) is tangent to By
along the orbit uy - G.

PROOF. The first statement is easy to prove while the second is somewhat more
subtle, though its significance should be clear: The intrinsic torsion is the only differential
invariant of first order for G-structures.

To prove the first statement, suppose that 8; is a connection 1-form on B; and suppose
that f : M; — M, satisfies f1(B1) = B2. Since f is G-equivariant by constuction, it
follows that f](6;) is a connection form on By, so that f{(62) = 61 + p(w1) for some
p: By — g® V*. Consequently, it follows that f;7Ty = T; — dp, so that

D) = [f(T)] = [T - é(p)] = [T1],

as claimed.

To prove the second statement, it will be necessary to construct the desired map f.
I'll do this later.

1.1.4. e-structures. The case of {e}-structures occupies a critical place in the theory, so
it 1s worthwhile to devote some time to understanding this case. I will now collect together
some of the basic results about {e}-structures that will be needed in the remainder of the
lectures.

The first problem that I want to take up is how to compute the local and infinitesimal
automorphisms of a given {e}-structure. I will begin the discussion by considering the
construction of the differential invariants of such a structure.

Thus, suppose given a coframing w = (w') on an n-manifold M. Since the w® are a
basis for the 1-forms on M, it follows that there exist unique functions C}k = —C,ij on M
so that

dw' = %C’;k Wi aw?,
In general, of course, these functions will not be constants, but will satisfy differential
equations got by taking the exterior derivative of the equations above. The result is
equations of the form

(A% + (CLxClt — ClCY ') Awd Aw* =0

Regarding the case of global automorphisms, it is a theorem of Kobayashi [Kob] that,
for any coframing n of a connected manifold M, the group I' of (globally defined) smooth
maps f : M — M that satisfy f*(n) = n can be given a smooth structure of a Lie group
so that for each # € M, the evaluation map E, : I' — M defined by E,(f) = f(z) is a
smooth embedding of T" as a closed submanifold of M.

Another important aspect of this problem is a uniqueness theorem, which should,
roughly, state that two {e}-structures whose derived invariants are ‘related in the same
way’ are, in fact, locally equivalent.

THEOREM. Suppose that, on a domain D C R?, there are specified smooth func-

tions C}k = —C}; and F? where the indices satisfy the ranges 1 < i,5,k < n and

7
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1 < a < s. Suppose further that there are n-manifolds M and N, endowed with cofram-
ngs w and n, respectively, so that there exist smooth mappings a : M — D andb: N — D
satisfying

dw' = %C}koaw‘iAwk dn' = %C}kobn‘jAnk

da® = F}loaw’ db® = Fjobn’

Then if there exist & € M andy € N so that a(x) = b(y), there exists an x-neighborhood U C
M and a smooth map f:U — N satisfying f(x) =y, f*(n) =w, and f*(b) = a.

PRrOOF. Of course, the proof would like to use the Frobenius Theorem: On M x N,
one should consider the Pfaffian system I generated by the 1-forms 8" = n' —w" restricted
to the submanifold Z C M x N defined by b — a = 0. The difficulty is that one does not
know anything a priori about the rank of the functions a and b, so there is no reason to
believe that Z is anything like a smooth manifold. Moreover, even if it could be shown to
be a smooth manifold, there is no reason to believe that the Pfaffian system [ restricted
to Z need have constant rank, making application of the Frobenius Theorem problematic.
Thus, an alternative is needed. For this reason, I will first prove a lemma generalizing the
Frobenius theorem that is of interest in its own right.

LEMMA. Let T be a differentially closed ideal on a manifold M of dimension n—+p
and suppose that T is generated algebraically by a finite number of functions {z',... z°}
together with p 1-forms {01,... 6P} that are linearly independent. Then the set Z = {z €
M|z%(x) =0for 1 < a < s} is a disjoint union of n-dimensional integral manifolds of T.

PROOF. By the usual uniqueness theorems in ordinary differential equations, it suffices
to show that every point of Z lies in at least one n-dimensional integral manifold of 7 since
it is clear that there is at most one n-dimensional integral manifold of Z passing through
each point of M.

Fix + € Z. Note that, by the differential closure of 7 and using the index ranges
1 <ab<mn, 1<ap < s, there must exist functions fi', 1-forms ¢§ and ¢j, and
2-forms TG on M so that

dz" =295 + £ 6"
A9 = 2" Y4 + ¢f n 6"
I claim that it follows that any integral curve of the @' that intersects Z must lie entirely
in Z. For suppose that ~ : [0,1] — M satisfies v*(6') = 0 and y(0) = z € Z. Then the
functions (* on [0, 1] defined by (*(t) = =z (’7(t)> satisfy the initial conditions (*(0) = 0
and the linear system of differential equations
dace N
i = ¢ﬁ (7’(t))Cﬁ,
which, by uniqueness, forces (*(t) = 0 for all ¢.

Now, from the linear independence of the 6%, it follows that there is a neighborhood

of z € Z on which there exist vector fields X; (1 < < n) that are linearly independent

and satisfy 6°(X;) = 0 for all @ and 7. It then follows that there exists a smooth map L
from a cubic neighborhood of 0 € R™ to M that satisfies

L(th, ..., t") = eXPynx, O 0eXppux, (2).
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By shrinking the neighborhood of 0, I can arrange that L is a smooth embedding of
the neighborhood into M. The fundamental property enjoyed by L aside from satisfy-
ing L(0) = z is that every curve of the form

~(t) = L(z", ..., "7, t,0,...,0)

is an integral curve of X; and hence of the 1-forms 6. In particular, it follows that the
image of L lies entirely in the locus Z. It remains to show that L is an integral manifold
of the 8*. To see this, set n* = L*(6) and ¢} = L*(¢§). Then the structure equations
above show that

dn® = oy an’.

The n® also have the property that they vanish along curves of the form ¢ + (2,... 271, ¢,0,..

i.e., when one writes n% = A%, dz!, the functions A¢ satisfy
Ad(zt, ..., 2%0,...,0) =0
and, by the equations for dn®, there are equations of the form
0AY  0AY
dxl  Oxt
Now the proof of the usual Frobenius Theorem applies: uniqueness in a succession of
Cauchy problems shows that the A? must vanish identically. Hence 0 = n® = L*(0), so
that the image of L is an integral manifold of the 8%, as desired. [
Using this Lemma, the proof of the Theorem will be straightforward once the appro-

priate ideal has been constructed. First, let a(x) = b(y) = ap € D. By a theorem of
Whitney [GG], in a neighborhood of (ao, aop) in D x D, there exist smooth functions Fj}

and C}kﬁ so that

= By, A} — B} A}

Fi(p) — F(q) = F3(p.q)(p” — ¢”)

}k(?) - C}k(‘]) = C}kﬁ(pv C])(Pﬂ - C]ﬂ)
for all (p,¢) in this neighborhood. It follows that if we define functions z* = a® — b on
M x N, then there exist functions H and G;kﬁ on a neighborhood W of (z,y) € M x N

so that
F%oa — F/ ob—Hlﬁz
Clkoa C]kob: G]kﬁzﬂ
By the given structure equations, one then gets a formula

dz® = d(a® —b*) = Ffoaw' — Ffoan' = Hz" w' — F{*ob¥'.
Also, by the given structure equations
dé' = dn' — dw' = 1C’kobn nn) — 3Choaw' AWl
= 1C”kob (77 ant —w Aw]> — —C’kﬁz wh AW
= 3CH0b (0" n 0 + 6" rw! + W Al ) — 3Gp 2" w AW
Thus, the ideal T generated by the 8 and the z® satisfies the hypotheses of the Lemma in

a neighborhood of (x,y) € M x N. An application of the Lemma then gives the existence
of an n-dimensional integral manifold of 7 in a neighborhood of (x,y). By construction,

° 70)7
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the 1-forms w! are linearly independent on this integral manifold, so near (x,y) it is the
graph of the desired map f. O

So much for uniqueness. However, for many applications, it is important to know how
many coframings exist (up to diffeomorphism) where the derived invariants satisfy some
given constraints in advance. The typical case occurs in geometric problems where the
calculations have led to some formulae of the form

i1k
dw' = 505 w! Aw”,

da® = F?

where the functions C}k and F are explicitly known in terms of the functions a. Further-
more, exterior differentiation of these equations produces no new relations among the w*
and the a®. One would then like to know whether there exists such a system or not.

The simplest case of this kind of question is when there are no differential invariants a®,
i.e., when the C}k are constants. In this case, the exterior derivative of the equation dw® =

%C’;k w’ aw¥ is the equation
0=d(dw') = (Cp;Cii + ClxClF + CLyCTl) w! aw® Aw!,

so it follows that such a system with the w! independent cannot exist unless the con-
stants C}, satisfy the Jacobi identities:

for all 7, 5, k, and [. As Lie proved in his Third Fundamental Theorem, this necessary
condition is also sufficient.

In the more general case where C}k is allowed to depend on some parameters and their
derivatives in terms of the coframing are specified, a generalization of the Jacobi identity
is required. This generalized condition is found the same way as the Jacobi condition: one
computes the exterior derivatives of the given equations and notes the identities that the
functions €' and F' must satisfy in order for the exterior derivatives to be consequences of
the equations themselves. According to the following theorem, these necessary identities
are also sufficient in the case where the C' and F' are analytic functions of a. Thus, this
is a generalization of Lie’s Third Fundamental Theorem. It is due, in this form, to Elie
Cartan.

THEOREM. Suppose that D C R® is an open set on which there exist real analytic
functions Ct = —C}, and F? (where the index ranges are 1 < 1,5,k < n and 1 <
a, 3, < s) and suppose that these functions satisfy the equations

?

1 ac; aCy; aC; 4 4 4
= (F@ Ko Fp—L 4 Fr L) = OLL O+ CLy O+ Cly O

2 7 da~ Ja® Ja®
and
OF® OF~
p J _ 6 t « l
F; 9’ F] 90’ F; C’”.
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Then for every ag € D, there exists a real analytic n-manifold M together with a real an-
alytic coframing n = (n*) and a real analytic mapping a : M — D satisfying the equations

dw® = 1C”koaw Awk

da® = F]qoa,w].

REMARK. Of course by the previous theorem, this manifold and coframing are unique
up to diffecomorphism. Note that a need not have constant rank or even have rank n on a
dense open subset of M. An example in [Br?] that classifies the torsion-free connections on
4-manifolds with holonomy conjugate to the irreducible degree 4 representation of SL(2, R)
displays how complicated the maps a and their images can be.

PRrROOF. The proof is a straightforward application of the Cartan-Kahler theorem.
Set X = R™ x GL(n,R) x D with projections to the factors given by = : X — R”,
g:X = GL(n,R), and a : X — D. Define the R"valued 1-form w = (w') on X by the

formula w = p~! dx. Now define the 1-forms and 2-forms
0% = da® — F}' w?
0! = dw' — %C’;k w? Awk
Let T be the differential ideal generated by the 1-forms #® and the 2-forms ©¢. Then,

because of the assumptions that we made about the functions C}k and FY, a computation
reveals that

OF? :
d9* = ——= 6" — F{o’
dal ’
4 ac!
do' = C’kGJAwk—— Ik 98 nwd Awk
OaP

In particular, 7 is differentially generated by the given 1-forms and 2-forms.
Now, from the definition of w?, it follows that there exist 1-forms

7} =(¢g* dg)§ mod {w', ..., w"}

so that O = —’y}

integral elements of Z. One easily establishes (using any flag) that the characters of these
elements are sg = s, and s; = n for 1 <1 < n. Moreover, the space of integral elements at

rw’. Hence, the equations ¢ = ’y; = 0 define a field of n-dimensional

any point satisfing the independence condition w'A---w™ # 0 is parametrized by n<"+1>
parameters p?k = p};j by the equations

< :’y;—p;kwk = 0.

Thus, S = n("';l> =381 4+2s5+---+ns, and Cartan’s Test is verified, so that all of these
integral elements are ordinary. By the Cartan-Kahler Theorem, there exist n-dimensional
integral manifolds satisfying the independence condition w'a---w™ # 0 through every
point of X. Pulling back the 1-forms w'® and the coordinate projection a to such an
integral manifold M passing through (0, [,,,a0) € X = R™ x GL(n,R) x D then produces
the desired coframing and mapping. O

REMARK 1. The reader may have noticed that very little about the structure of the
domain D is used in the proof. In actual fact, the theorem can be stated without reference
to coordinates on D and, in this form, it is perhaps clearer, though not as computationally
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immediate. It does sometimes happen that this version is useful, however, so I will insert
a short discussion of this here: One can avoid any mention of indices or coordinates
by resorting to the following language: Let V be a vector space of dimension n and
let D be a (real analytic) manifold of some dimension s. Suppose given a (real analytic)
function C': D — V @ A*(V*) and a (real analytic) bundle map F : D x V — TD (which
is not assumed to be of constant rank). Assume also that C' and F satisfy certain natural
PDE of the form
{Fv C}l = J(C)

{F,F},=(F C)

(I leave the definition of the various operators to the interested reader.) Then for every ag €
D, there exist a neighborhood M of 0 € R™ on which there exist a V-valued coframing w
and a (real analytic) function a : M — D satisfying a(0) = ag and the equations dw =
Coa (waw) and da = Foa (w). (Here, ‘da’ is to be interpreted as the differential da :
TM — TD.)

REMARK 2. The hypothesis of real analyticity is probably not necessary and a gen-
eralization of the usual argument for Lie’s Third Fundamental Theorem using only ODE
could be constructed, but I leave this also for the interested reader. The real analytic case
more than suffices for all that I have in mind.

REMARK 3. Let D* C D be the open, dense subset consisting of those ag € D
where F(ag), considerd as an s-by-n matrix, has maximal rank r < min(s,n). Then D*
is foliated by the images of maps a : M — D associated to coframings of this type, with
leaves of dimension r and hence of codimension s—r. Thus, it makes sense to say that
the ‘generic’ coframing of this type depends on s—r parameters and has an infinitesimal
symmetry algebra of dimension n—r. However, this statement can be deceptive and so
must be handled with care. For example, it can happen that there is a stratum D, C D
where the rank of F is some r, < r that is foliated by images of maps a and the codimension
of this foliation is greater than s — r. In this case, the moduli space of ‘special’ solutions
associated to D, will have greater ‘dimension’ than that of the moduli space of ‘generic’
solutions.

1.2. The crude method.

1.2.1. The first structure equation.
1.2.2. Prolongation.

1.2.3. The tower of bundles.

1.2.4. Polynomaial differential invariants.

1.3. Reduction.
1.3.1. The torsion representation.
1.3.2. Stabilizer types and reduction.
2. Elementary Examples
2.1. Riemannian geometry.

2.2. 3-webs in the plane.
2.3. .
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3. Advanced Examples

3.1. Real Lagrangian bipolarizations. This example will treat the geometry of
an Sp(n, R)-structure and two substructures, the substructure preserving a Lagrangian
foliation and the substructure preserving a Lagrangian bi-polarization.

3.2. CR-hypersurfaces in C?. In this example, I will give an exposition of Car-
tan’s solution of the equivalence problem for non-degenerate hypersurfaces in complex 2-
manifolds. Of course, the theory has been extensively developed in the intervening years,
with the general solution for a non-degenerate hypersurface in a complex n-manifold being
the subject of a famous paper by Chern and Moser [ChMo] as well of several works by
Tanaka and his school [Ta??].

3.2.1. The geometric problem and its G-structure. Suppose that M? C X is a smooth
real hypersurface in a complex 2-manifold X, which can be taken to be C? if desired . For
each x € M, the tangent plane T, M cannot be a complex subspace of T, X, but contains
a unique complex subspace D, C T,M of complex dimension 1. Thus, M inherits a
geometric structure from being immersed as a hypersurface in a complex 2-manifold.

DEFINITION 3.2.1.1. A (smooth) CR-structure on a 3-manifold M is a choice of a
(smooth) rank 2 subbundle D C TM together with a choice of complex structure on D,
i.e., a smooth bundle map J : D — D satisfying J? = —Idp.

In the real analytic category, every CR-structure on a 3-manifold is locally induced
by an immersion into CZ.

PROPOSITION 3.2.2. Let (D, J) be a real analytic CR-structure on M?. Then for each
point x € M there exists an x-neighborhood U and a real analytic embedding Z : U — C*
so that (D,J) 18 the CR-structure on U induced by the embedding Z.

PRrROOF. On aneighborhood U of & choose a real analytic, non-vanishing real 1-form p
that annihilates D and a real-analytic, complex valued 1-form 7 linearly independent
from p that satisfies n(Jv) =wn(v) for all v € D. Then any complex-valued 1-form ¢ on U
that satisfies ((Jv) =1 ((v) is a linear combination of p and n. As the reader can check, to
construct the desired Z, one must find two complex functions z! and 2% in a neighborhood
of x whose differentials are linearly independent and that satisfy dz*(Jv) = 1dz*(v), i.e.,
so that dz¥apaw = 0. Now, on N = U x C with second projection z : N — C, let T be
the ideal generated by the two 3-forms that are the real and imaginary parts of dzapaw.
The characters are s; = 0 for ¢« # 2 and s; = 2. The space of 3-dimensional integral
elements that satisfy the independence condition parwaw # 0 is clearly of dimension 4,
so the system is in involution. Choose two integral manifolds ¥;, ¢ = 1,2 of this system
that pass through (2,0) € N but that are not tangent there. Each is then the graph of a
function z' that satisfies dz¥apaw = 0 and the condition that the two integral manifolds
not be tangent is equivalent to dz'adz? # 0. O

REMARK. The famous Levy-Nirenberg example shows that the assumption of real
analyticity is necessary here.

Suppose now that M? is endowed with a C R-structure (D, J). Let V=R & C and
think of V' as the space of columns of height 2 whose first entry is real and whose second
entry is complex. A coframe u : T, M — V will be said to be 0-adapted to (D,J) if
u(Dy) = C C V and, moreover, u(Jv) = tu(v) for all v € D,. I will let By C F*(M,V)

denote the space of 0-adapted V-valued coframes on M. If v and u* lie in By and share
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« (7 O
=y o,

where r is a real number and @ and b are complex, with @ # 0. Thus, By is a Gg-structure

on M where
r 0
a={ (5 1)

Conversely, given a Gp-structure By on M, there is canonically associated to it a unique
CR-structure (D,J) that gives rise to it via this construction. Thus, the two sorts of
structures are equivalent.

3.2.2.  The first analysis. Now let By be a Go-structure on M3. I will write the
canonical V-valued 1-form w on By in the form

()

where 6 is a real-valued 1-form and 1 is a complex-valued 1-form. The first structure
equation can be written in the form

(9) (,00 0) (9) (t%(bn—l—bn)—l—anAn)

d = - A + ” N

n Bo o n Or(cn+en) + T nai

where L is a real function on By but the other coefficients are allowed to be complex.
Clearly, by adding multiples of 8, n and 7 to the pseudo-connection forms pg, ag, and Jo,

I can arrange that b =c=e =T = 0, but I cannot affect L. Thus, I can assume that the
structure equations have the form

6 po O 6 1Lnan
d =— :
()= (% ) )+ (s
Differentiating the first equation df = —pgaf + 1L nan and reducing modulo 8 gives the
relation

the same basepoint, then

reR* aeCr, andbE(C}.

dL = L(Oéo + ap — pO) mod 97 7, 777

so it follows that either L vanishes identically on a fiber of By or is nowhere zero there.

The case where L vanishes identically, i.e., the intrinsic torsion of the Ggp-structure
vanishes turns out not to be very interesting. In this case, one can calculate that the
characters of the Lie algebra gg are s;1 = 3, s = 1, and s3 = 0. Moreover the variability of
the pseudo-connection is of dimension 5 = sy + 283, so Gg is semi-involutive and all of the
real-analytic Gp-structures with vanishing torsion are equivalent. Thus, it makes sense to
concentrate on the (generic) case where L is nowhere vanishing.

Now, there is a direct geometric interpretation of L. Since 8 is a non-zero multiple
of 7*(0) where o is any non-vanishing 1-form with D = kero, it follows that Ordf =
1L 8anan 1s non-zero if and only if oado 1s non-zero, i.e., if and only if D is a contact plane

field on M3.
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DEFINITION 3.2.2.1. A CR-structure (D, J) on M? is non-degenerate if D is nowhere-
integrable, i.e., is a contact structure on M.

Thus, the condition that L be nowhere vanishing is the condition that the original
CR-structure be non-degenerate. From now on, I am going to assume that this is the case.
This assumption leads directly to the first reduction: Set

By ={ueBo|L(u)=1}

Then B; is a GG1-structure on M where

“={ (5 0)

Pulling all of the forms on By back to B; and giving them the same names, the structure
equations on B; now read

8\ _ (aot+tas O . 0 (ag + a0 — po)nb +1nan
()= (ar ) ) (o),

where ag + ag — po = af + bn + by for some functions ¢ and b on By. Subtracting bn
from ag reduces the function b to zero and the structure equations become

() 2 () ()

Now the torsion is constant. If the algebra g; were involutive, then reaching this point
would imply that any two non-degenerate Gg-structures were locally equivalent. However,
one easily computes that the characters of this algebra are s1 = 3, s3 = 1, and s3 = 0
while the pseudo-connections with this torsion are determined up to a replacement of the

form (ozo,ﬁ0> > (aé,ﬁé‘) where

o5\ [ oo n st 0 6
5 Bo st st ) \n )’
and s! and s? are arbitrary complex-valued functions on By, so dim ggl) =4 < s+ 259+

3s3 = 5. Hence, there remains the possibility that there will be differential invariants at
some higher order.

acC* andbE(C}.

3.2.3.  Prolongation and further reductions. According to the prescription of the
method of equivalence, I now construct a ggl)—bundle B;l) over B that consists of the
coframes on By with values in V & gy that satisfy the structure equations of By. For
simplicity, I will identify V' @ g; with R @ C* thought of as the columns of height 4 Wi(tlr)l
1

the first entry real and the remaining three complex. In the trivialization B;l) =B xg,

induced by the section By — B;l) represented by a choice of ag and 3y on B; as above,
the canonical 1-form w") has the form

6 1 0 0 0\ ' /4 6
JREOI I/ 0 1 0 0 _ n

o st 0 0 0 g ag — s'é

¢ 2 880 0 Bo Bo — 520 — sln
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(1)

where, of course, the functions s' and s? now represent coordinates on g; ' and so are

independent from the functions on By. The structure equations on B;l) have the form:

0 0O 0 0 0 0 —(a 4 a)ab +1nan
nt_ (0 0 00 n —BA0 — ann

d a |l o 0 0 0 o * Ty
16} ol of 0 0 3 Ty

where T, and T3 represent the torsion terms associated to those components of the canon-
ical 1-form while ¢} and o2 are 1-forms that satisfy o = ds' modulo semi-basic forms for

the projection B;l) — By but that are otherwise arbitrary.
Computing the exterior derivatives of the first two structure equations yields

0:d<d9>: —(Ta—I—T_a—zﬁAﬁ—l—zBAn>A9
Ozd(dn) :—<T5—|—[3A07>A9— (Ta—l—zﬁAﬁ>An

Setting T* = T + 1 3n7 + 20 3an and T} = Ts + 3ra, these equations can be written
in the form
(T:; —|—T_Z§> NS (TE) A+ (T:;) An =20

and the second of these equations implies, via Cartan’s Lemma, that there exist 1-forms 11,
Yo, and 3 so that

To =2nb+¢1an

TE :77Z)3/\9—|—77/)2/\77
Since Ty and T} are semi-basic, it follows that the 1; must be also. Thus, by subtracting 1>
from o} and 13 from o2, I can suppose that )2 = 13 = 0. Then the remaining equation
on T implies that

(;/)1 AT+ /\77) AnG =0,

which implies that ©1an = bnab + Rnan where b 1s a complex function and R is a real

function. By adding b7 to o, I can assume that b = 0, so that the structure equations
now take the form

0 0O 0 0 0 6 —(a 4 a)ab +1nan
U 0O 0 0 0 m 4 —pBAb — ann

al oy 0 0 0 o —10an — 21 8An + Rnan

¢ ol of 0 0 ¢ —Ora

Now computing the exterior derivative of the da equation modulo 6 yields
0=d(da) = (dR - (oz—l—o?)R—Zz(a_é— oy) ) Anafj mod 6
which implies
dR=(a+a)R+ 2@(0_6 — O'é) mod 6,1, 7.

In particular, on each fiber of B;l) — By, the relation dR = 2: d(s_l — s1) holds. Tt follows
that the equation R = 0 defines a Ga-structure By C B;l) on By where G5 is the subgroup

consisting of those matrices in ggl) for which s' is real. I will now pull back all of the
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forms and functions on B;l) to By, write o = 0o + 17 where ¢ and 7 are real 1-forms,
and write the structure equations on B in the form

0 0O 0 0 0 0 —(a 4 a)ab +1nan
N 0 0 0 O n . —BAb — ann

o oo 0 0 O o —1 A — 21 8An —17A0

¢ o o9 0 0 ¢ —0OAd — 1 TAY

The above congruence for dR now implies that 7 = a @ + b1 + b7 for some real function «a
and complex function b on By. By adding wan to o, I can arrange that ¢ = 0, but I
cannot absorb b. The last two structure equations now read

da=—oon —1Brn—208rn—1(bn+bn)rb

dB = —02n —coan—Bra+1bnan

and it remains to determine how b varies on the fibers of By — Bjy. To do this, compute
the exterior derivative of the first of these equations and write it in the form

0=d(da)= — <d00—(oz—l—o?)Aao—zﬁAB—I—%@<USAﬁ—U_§An>> G
- <db—(2a—|—o’z)b—|—%a_§> NI
—1(db—(2a+a)b+203) Aijnbd

The imaginary part of this equation implies that

dbE(2a+@)b—%US m0d97777777

which implies that, on each fiber of By — Bj, an equation of the form db = %@ holds.
In particular, the equation b = 0 defines a G3-structure By C By on By where G35 is the
1-dimensional subgroup of G5 defined by the equation s? = 0.

Now pull back all of the forms and functions involved to Bs. The structure equations
take the form

0 0O 0 0 0 0 —(a+a)ab +1nan
N 0 0 0 O m 4 —pBAb — ann

o oo 0 0 O o —1 AN — 21 8An

¢ 0 o9 0 O 16} —Bra — ol A0

where o2 is now basic, and, in fact, from the imaginary part of the equation above, must

satisfy <0'_g/\77 + 0'3/\77) A8 = 0. This implies 02 A8 = (rn + s177)a8 where r and s are real and
complex functions, respectively, on Bs. By adding r8 to og and calling the result o, I can
arrange that r = 0, and the structure equations become

0 0 0 0 0 0 —(a 4 a)ab +1nan
al 7l =_ 0 0 0 O 4 —BA0 — ann

o o 0 0 0 o —1 A — 21 8An

¢ 0 ¢ 0 O ¢ —fOrae — smab

where, now o is uniquely specified by these conditions. Thus, Bs is endowed with a
canonical {e}-structure and this constitutes the solution of the equivalence problem.
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To complete the structure equations, however, a formula for do is needed. The d(do) =
0 equation now yields
0= (da—(oz—l—o?)Aa—@ﬁAB> N,
so that do = (a 4 a)ac + 18483 + pabl where p is a real 1-form. Using this equation, the
identity d(dB) = 0 expands to

0=d(dB)=pannb — (ds — (3a -|—Oé)8> INTEXA
from which it follows that there are complex functions u, p, and ¢ on Bj so that
ds=Ba+a)s+ub+pn+qn
whence paf = —(pn + pn)ab, so that
do=(ata)ra+18r08—(pi+pn)ab.

The final Bianchi identity will follow from d(da) = 0, and this expands to give the state-
ment that there exist functions a, r, and v on Bj, with r being real valued, so that

dp:(307—|—20z)p—@36—|—a9—|—r77—|—v77.

3.2.3 Conclusions. Several conclusions can be drawn from these calculations.

First of all, since the group of symmetries of a non-degenerate CR-structure on
a 3-manifold embeds into the group of symmetries of an {e}-structure on an 8-manifold,
it follows that the group of symmetries of such a CR-structure is a Lie group of dimension
at most 8.

Moreover, this maximum dimension can be reached only if the local symmetry group
of the {e}-structure on Bj acts with open orbits on Bs. However, examining the structure
equations, this happens if and only if the functions s and p are locally constant. The
structure equation for ds, however, shows that s cannot be locally constant unless it
vanishes, which implies in turn that p vanishes as well. Then the equations

dd = —(a+a)rb+inan
dn=—0nr0—ann
da=—crl—18r7—20nn
df = —ocan+anp
do = (oz—l—o?)Aa—l—zﬁAB

are the structure equations of a Lie group of dimension 8.

Naturally, the reader will want to know which one. The simplest way to identify the
group is to notice that there are no aaa terms on the right hand side of these equations but
that o appears in the right hand side of all the equations except that of da. This implies
that the vector fields X and Y dual to the real and imaginary parts of a form a maximal

torus of dimension 2 in the Lie algebra of infinitesimal symmetries of the coframing. For
any form ¢ in the coframing, define its X- and Y-weights by the formulae

wx (o) =X 2dg,
1wy (@) ¢ =Y wdg.
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Then plotting the pairs (wX(qb), wy(qb)> in the plane as ¢ ranges over the basis (6,71,1, a, a, 3,3, 7)
reveals the characteristic hexagon of the roots of A;. Moreover, because the roots are
‘half-real’, the actual real form of Ay represented must be su(2,1). Thus, the group must
be SU(2,1). In fact, the structure equations can be written in the form dy = —vyay where

—%(QOz—I—oi) —13 0
v = " sla—a) 13
— 8 n %(oz—l—Qoz)

Note that ~ takes values in su(2, 1), where the model of SU(2, 1) being used is the subgroup
of SL(3,C) that fixes the Hermitian form H in three variables H(Z) = Z3 1 — Ty Zy +
Z1 Z_3

In particular, if M? is simply connected, there is a smooth map F : By — SU(2,1)
that satisfies F*(¢~!'dg) = ~. As the structure equations reveal, F maps each fiber
of Bs — M to a left coset of the parabolic subgroup P C SU(2, 1) consisting of the upper
triangular matrices in SU(2, 1), i.e., the subgroup that fixes the H-null line Ly C C* defined
by Zy = Z3 = 0. Thus, SU(2,1)/P is naturally identified with the hypersurface N* C CP?
of H-null lines in CP2. Thus, F covers a map f : M? — N? that is a local equivalence of
CR-structures. The conclusion is that every CR-structure with 8-dimensional infinitesimal
symmetry algebra on a simply connected 3-manifold has a ‘developing map’ to N3 that is
unique up to composition with a CR-automorphism of this ‘flat’ structure.*

Second, in the general case, s is the coefficient of a tensor field that is well-defined
on M. The simplest such expression involving s is perhaps Q = s56*, which is a well-
defined section of S* (DJ‘> on M. This follows since ) is manifestly semibasic and and a
computation using the structure equations reveals that, for any vertical vector field Y for
the projection By — M, the Lie derivative of () with respect to Y vanishes. One can also
interpret the expression S = sn®@n®O as a well-defined section of the bundle So’z(D)®DJ‘
over M, i.e., the bundle of complex anti-linear quadratic forms on D with values in DL,
Other combinations of the functions on B3 make well-defined tensors on M as well, but
have to be treated with more care. For example, the expression E = s7%06 4 2ipnob?
mod 6 yields a well-defined section of the quotient bundle S*(T*M)/(D+)%. The verifi-
cation of these statements will be left to the reader.

Third, in the case where = s56* is non-vanishing on M, there is a canonical
reduction of B3 to a Zs-structure By — M defined by the equations s = —1, p = 0,
u + u = 0. This follows from the formulae for ds and dp together with the formula

du = (4o + 2a)u +p3 +4so mod 6,n,7

(which is derived from the identity d(ds) = 0). Pulling all the given quantities back to By,
writing © = 2um where m is real and replacing ¢ by 8¢ for notational convenience, this
results in equations

a=1mb—3qn+qn
0=l +wn+ry

4Explicitly computing this developing map requires solving a Lie equation of the form dg = gv where
v is a known 1-form with values in su(2, 1).



22 GEOMETRY OF PDE

resulting in structure equations of the form

do =2(qn+qn)nb+1nan
dn=tnab+gnan—wrnnb

for some function ¢ constructed out of the other invariants. Under the Zs-action on the
double cover By — M, the form 6 is even while 5 is odd. Thus, the coframining (6,7) is
well-defined on M up to a replacement of the form (6,n) — (6, —n). It also follows that ¢
and r are even while ¢ is odd.

In particular, it follows from this that the group of symmetries of a non-degenerate CR-
structure for which @ # 0 is a Lie group of dimension at most 3 and that this upper bound
is reached only for homogeneous structures, in which case, the functions ¢, r, and ¢ must
be constants. Indeed, if one assumes that these functions are constants, then computing
the exterior derivatives of the above equations yields that ¢t +¢ = 0, so that ¢ = b, for some
real constant b, and the equation rq 4+ bg = 0. Conversely, any solution (r,b,q) € R* x C
of rq + bg = 0 defines a homogeneous CR-structure. Cartan used this fact in his original
paper [Ca??] to classify the homogeneous CR-hypersurfaces in C2.

3.3. Monge-Ampére systems in two independent variables. A long example
explaining the geometry of Monge-Ampére systems on 5-manifolds and explaining the
three types.

3.4. Monge-Ampére systems in three independent variables. A long example
explaining the geometry of Monge-Ampére systems on 7-manifolds and explaining the
algebra of constant types together with a first pass at the invariants.

3.5. Almost complex 4-manifolds.

3.6. Pfaffian systems.



